Eric Hamilton

Eric Hamilton

Between its visit to the White House and Intel’s annual Investor Day, we’ve collected a fair bit of news regarding Intel’s future.

Beginning with the former, Intel CEO Brian Krzanich elected to use the White House Oval Office as the backdrop for announcing Intel’s plans to bring Fab 42 online, with the intention of preparing the Fab for 7nm production. Based in Chandler, Arizona, Fab 42 was originally built between 2011 and 2013, but Intel shelved plans to finalize the fab in 2014. The rebirth of the Arizona-based factory will expectably facilitate up to 10,000 jobs and completion is projected in 3-4 years. Additionally, Intel is prepared to invest as much as $7 billion to up-fit the fab for their 7nm manufacturing process, although little is known about said process.

Revisiting an article from GN days of yore, GamersNexus endeavored to explain the differences between Western Digital’s WD Blue, Black, Red, and Purple hard drives. In this content, we also explain the specs and differences between WD Green vs. Blue & Black SSDs. In recent years, Western Digital’s product stack as changed considerably, as has the HDD market in general. We’ve found it fitting to resurrect this WD Blue, Black, Green, Red, and Purple drive naming scheme explanation. We’ll talk about the best drives for each purpose (e.g. WD Blue vs. Black for gaming), then dig into the new SSDs.

Unchanged over the years is Western Digital’s affinity for deferring to colors as to identify products, where other HDD vendors prefer fantastic creature names (BarraCuda, IronWolf, SkyHawk, etc.). As stated above, Western Digital has seriously changed its lineup. The WD Green drives have been painted blue, as they’ve been folded into the WD Blue umbrella. Furthermore, the WD Blue brand has seen the addition of an SSHD offering and SSDs in both 2.5” and M.2 form factors. This in no small part thanks to Western Digital’s acquisition of SanDisk—another notable development since our last article. With that, the WD Blue brand has expanded to become Western Digital’s most comprehensive mainstream product line-up.

Other changes to the Western Digital rainbow include the expanding of WD Black, and confusingly enough, WD Green brands. Starting with the latter, Western Digital rebranded all WD Green HDDs as WD Blue, selling WD Blues under two different RPMs, but recently reentered the SSD market with both. However, the WD Green SSDs are currently unavailable, perhaps due to the global NAND shortage. Likewise, the WD Black series has spilled over into the realm of NVMe/PCIe based storage and WD Black HDDs have expanded capacities up to 6TB; that’s quite a change from the 4TB flagship model we covered back in 2014. Lastly, there is WD Purple, of which we will retroactively cover here.

SK Hynix has been busy as of late. We most recently covered their plans for expansion, which offered a cursory foretaste into what 2017 might hold for the semiconductor supplier. SK Hynix has also recently further delineated plans for 2017, trailing behind their still-fresh announcement of the industry’s first 8GB LPDDR4X-4266 DRAM packages aimed at next-generation mobile devices.

In revealing plans, SK Hynix intends to volumize production of new types of memory—not altogether unexpected. Their primary focus on NAND production and expansion over DRAM is most noteworthy, at least for impermanent future. As such, SK Hynix intends to start volume production of 72-layer 3D TLC NAND (3D-V4). For reference, SK Hynix’s 36-layer and 48-layer NAND were 3D-V2 and 3D-V3, respectively. Notable about SK Hynix’s fourth version of 3D NAND is that it will use block sizes of 13.5 MB over the 9 MB sizes of the second and third generation predecessors. Furthermore, SK Hynix intends to roll-out 256 Gb 3D TLC ICs by Q2 2017, with 512 Gb 3D TLC ICs coming in Q4 2017. SK Hynix’s new 72-layer 3D NAND should allow for higher capacity SSDs in smaller form factors and increase performance on a per IC basis.

With the arrival of Kaby Lake on the microarchitecture roadmap, Intel had effectively signaled the end of their long-established “tick-tock” cadence of manufacturing and design, opting instead for the new “process-architecture-optimize” paradigm. Specifically, the “optimization” step comes by way of a revised fin profile as part of the new process that Intel has dubbed “14nm+.” While the architecture remains largely unchanged from Skylake, the improved fin profile and larger fin pitch affords a less transistor-dense design, making way for MHz headroom in overclocking performance, which can be ascertained by looking at our review of the i7-7700K. Furthermore, readers can learn more about the Kaby Lake architecture, SKUs, and the Intel 200-series chipsets amongst the usual thermal and benchmark performance. To an extent, Kaby Lake can be viewed as the Devil’s Canyon counterpart to Skylake.

The scope of our build today will be dual purpose, so to speak. In its duality, the foremost objective will be leveraging the new Intel i7-7700K in combination with a GeForce GTX 1080, underpinning our second objective: 144Hz & 120Hz based gaming. The build will be ready for resolutions at 1080p or 1440p with higher refresh rates (144 & 120), and will still manage a minimum of 60 FPS with ultra settings. Lowering settings will allow for that 120-144Hz refresh target.

We will also deploy one of the new Z270 motherboards, complimenting the overclocking aptness of the i7-7700K. Speaking of overclocking, the i7-7700K approaches the 5GHz barrier with relative ease. We’ll be relying on a CLC cooling solution with 280mm of radiator space. While it may prove conceivable to approach a 5GHz overclock with active air cooling thanks to a better frequency/voltage curve with Kaby Lake, there are a couple reasons we won’t go that route, detailed below.

Additionally, we will list a 144Hz, G-Sync-capable display as an optional purchase. Find our tutorial on building a gaming PC below, if this is all new. In an interesting deviation from our normal methodology, the team at GamersNexus will be replicating this build and running it through the benchmark gauntlet.

Editor's note: The point was to use only products that we had in our inventory, meaning no purchases or product requests allowed.

As solid-state storage continues to displace mechanical drives, so too does the constriction of the HDD market continue. As part of their ongoing plan to stay profitable and financially stable, Seagate has opted to shut down its HDD manufacturing facility in Suzhou, China. The Suzhou plant was one of Seagate’s largest production assets, and its resultant closure will acutely reduce the company’s HDD output.

However, this isn’t unforeseen, as last year Seagate announced its intentions to augment manufacturing capacities from around 55-60 million drives per quarter to approximately 35-40 million drives per quarter in accordance with their continued restructuring initiative. As part of that effort, Seagate reduced global employee headcount by 8,000 last year. Moreover, the closing of the Suzhou facility will see the layoff of a further ~2,200 employees.

Page 1 of 4

  VigLink badge