Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

We’ve got a lot of Ryzen news confirmations leading into the product’s inevitable launch, and will today be focusing on the stock coolers, ASUS X370 motherboards, and die shots of the Ryzen architecture.

And there’ll be more soon, of course!

We previously noted that some motherboards at CES contained text indicating support for an AMD “S3.0 Radiator,” which we could then only assume would be a stock cooler bundled with high-end Ryzen CPUs. This was plainly on display at CES, though we couldn’t get any official information on the cooler from AMD.

The original Sandia & Coolchip style coolers spiked interest in a market segment that’s otherwise relatively stagnant. With a whirling aluminum block serving as both the fan and the heatsink, the cooling concept seemed novel, dangerous, and potentially efficient. That’s a mix to cause some excitement in CPU coolers, which are otherwise the expected mix of metal and air or, if you wanted to get really crazy, liquid, metal, and air.

That concept largely vanished. We haven’t heard much about the use of Sandia-inspired designs since 2014, and certainly haven’t seen any majorly successful executions of either Sandia or Coolchip coolers in the CPU cooling space. Nothing that took the market by force and demanded eyeballs beyond initial tech demos and CES showcases.

Thermaltake decided to take its own stab at this type of cooler, working with Coolchip on technology implementation and execution of the Engine 27 unit that was at CES last month.

Thermaltake’s Engine 27 is $50. It’s a 27mm form factor cooler, meaning it’s one of a select few that could fit in something like a SilverStone PT13 with its 30mm requirement. The direct competition to the Engine 27 is SilverStone’s NT07 and NT08-115XP, the latter of which we’re also testing. This Thermaltake Engine 27 review looks at noise and temperatures versus the SilverStone NT08-115XP & Cryorig C7.

This episode of Ask GN focuses on addressing questions about temperatures, liquid cooling, and air cooling, though does include one question about multi-channel platforms for memory. For something different, the beginning of the episode features a surprise package from NZXT, who’ve lately set to antagonizing us with pucks, and the episode concludes with video clips from our convention adventures.

There’s a of fun stuff in this episode, but as always, we’re not able to really get into the weeds with each individual topic. We go fairly deep on some of the thermal stuff, but there’s a lot more that could be discussed. The multi-channel question, for example, doesn’t account for changes in the world of DDR4 and new platforms. We’ll have to test that at some point.

Timestamps after the embedded video.

GPU diode is a bad means for controlling fan RPM, at this point; it’s not an indicator of total board performance by any stretch of use. GPUs have become efficient enough that GPU-governed PWM for fans means lower RPMs, which means less noise – a good thing – but also worsened performance on the still-hot VRMs. We have been talking about this for a while now, most recently in our in-depth EVGA VRM analysis during the Great Thermal Pad Fracas of 2016. That analysis showed that the thermals were largely a non-issue, but not totally inexcusable. EVGA’s subsequent VBIOS update and thermal pad mods were sufficient to resolve any concern that lingered, though if you’re curious to learn more about that, it’s really worth just checking out the original post.

VBIOS updates and thermal pad mods were not EVGA’s only response to this. Internally, the company set forth to design a new PCB+cooler combination that would better detect high heat operation on non-GPU components, and would further protect said components with a 10A fuse.

In our testing today, we’ll be fully analyzing the efficacy of EVGA’s new “ICX” cooler design, to coexist with the long-standing ACX cooler. In our thermal analysis and review of the EVGA GTX 1080 FTW2 (~$630) & SC2 ICX cards (~$590), we’ll compare ACX vs. ICX coolers on the same card, MOSFET & VRAM temperatures with thermocouples and NTC thermistors, and individual cooler component performance. This includes analysis down to the impact the new backplate makes, among other tests.

Of note: There will be no FPS benchmarks for this review. All ICX cards with SC2 and FTW2 suffixes ship at the exact same base/boost clock-rates as their preceding SC & FTW counterparts. This means that FPS will only be governed by GPU Boost 3.0; that is to say, any FPS difference seen between an EVGA GTX 1080 FTW & EVGA GTX 1080 FTW2 will be entirely resultant of uncontrollable (in test) manufacturing differences at the GPU-level. Such differences will be within a percentage point or two, and are, again, not a result of the ICX cooler. Our efforts are therefore better spent on the only thing that matters with this redesign: Cooling performance and noise. Gaming performance remains the same, barring any thermal throttle scenarios – and those aren’t a concern here, as you’ll see.

The first unlocked i3 CPU, upon its pre-release disclosure to GN, sounded like one of Intel’s most interesting moves for the Kaby Lake generation. Expanding overclocking down to a low/mid-tier SKU could eat away at low-end i5 CPUs, if done properly, and might mark a reprisal of the G3258’s brief era of adoration. The G3258 didn’t hold for long, but its overclocking prowess made the CPU an easy $60-$70 bargain pickup with a small window of high-performance gaming; granted, it did have issues in more multi-threaded games. The idea with the G3258 was to purchase the chip with a Z-series platform, then upgrade a year later with something higher-end.

The i3-7350K doesn’t quite lend itself to that same mindset, seeing as it’s ~$180 and leaves little room between neighboring i5 CPUs. This is something that you buy more permanently than those burner Pentium chips. The i3-7350K is also something that should absolutely only be purchased under the pretense of overclocking; this is not something that should be bought “just in case.” Do or do not – if you’re not overclocking, do not bother to consider a purchase. It’s not uncommon for non-overclockers to purchase K-SKU Core i7 CPUs, generally for desire of “having the best,” but the 7350K isn’t good enough on its own to purchase for that same reason. Without overclocking, it’s immediately a waste.

The question is whether overclocking makes the Intel i3-7350K worthwhile, and that’s what we’ll be exploring in this review’s set of benchmarks. We test Blender rendering, gaming FPS, thermals, and synthetics in today’s review.

For comparison, neighboring non-K Intel products would include the Intel i5-7500 (3.4GHz) for $205, the i3-7100 for $120, and Intel i3-7320 (4.1GHz) for $165. These sandwich the 7350K into a brutal price category, but overclocking might save the chip – we’ll find out shortly.

To catch everyone up, we’ve also already reviewed the Intel i7-7700K ($350) and Intel i5-7600K ($240), both of which can be found below:

Page 1 of 330

  VigLink badge