Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

Our third and final interview featuring Scott Wasson, current AMD RTG team member and former EIC of Tech Report, has just gone live with information on GPU architecture. This video focuses more on a handful of reader and viewer questions, pooled largely from our Patreon backer discord, with the big item being “GPU IPC.” Patreon backer “Streetguru” submitted the question, asking why a ~1300~1400MHz RX 480 could perform comparably to an ~1800MHz GTX 1060 card. It’s a good question – it’s easy to say “architecture,” but to learn more about the why aspect, we turned to Wasson.

The main event starts at 1:04, with some follow-up questions scattered throughout Wasson’s explanation. We talk about pipeline stage length and its impact on performance, wider versus narrower machines with frequencies that match, and voltage “spent” on each stage.

We’ll leave this content piece primarily to video, as Wasson does a good job to convey the information quickly.

AMD’s Polaris refresh primarily features a BIOS overhaul, which assists in power management during idle or low-load workloads, but also ships with natively higher clocks and additional overvoltage headroom. Technically, an RX 400-series card could be flashed to its 500-series counterpart, though we haven’t begun investigation into that just yet. The reasoning, though, is because the change between the two series is so small; this is not meant to be an upgrade for existing 400-series users, but an option for buyers in the market for a completely new system.

We’ve already reviewed the RX 580 line by opening up with our MSI RX 580 Gaming X review, a $245 card that competes closely with the EVGA GTX 1060 SSC ($250) alternative from nVidia. Performance was on-point to provide back-and-forth trades depending on games, with power draw boosted over the 400 series when under load, or lowered when idle. This review of the Gigabyte RX 570 4GB Aorus card benchmarks performance versus the RX 470, 480, 580, and GTX 1050 Ti and 1060 cards. We're looking at power consumption, thermals, and FPS.

There’s no new architecture to speak of here. Our RX 480 initial review from last year covers all relevant aspects of architecture for the RX 500 series; if you’re behind on Polaris (or it’s been a while) and need a refresher on what’s happening at a silicon level, check our initial RX 480 review.

AMD’s got a new strategy: Don’t give anyone time to blink between product launches. The company’s been firing off round after round of products for the past month, starting with Ryzen 7, then Ryzen 5, and now Polaris Refresh. The product cannon will eventually be reloaded with Vega, but that’s not for today.

The RX 500 series officially arrives to market today, primarily carried in on the backs of the RX 580 and RX 570 Polaris 10 GPUs. From an architectural perspective, there’s nothing new – if you know Polaris and the RX 400 series, you know the RX 500 series. This is not an exciting, bombastic launch that requires delving into some unexplored arch; in fact, our original RX 480 review heavily detailed Polaris architecture, and that’s all relevant information to today’s RX 580 launch. If you’re not up to speed on Polaris, our review from last year is a good place to start (though the numbers are now out of date, the information is still accurate).

Both the RX 580 and RX 570 will be available as of this article’s publication. The RX 580 we’re reviewing should be listed here once retailer embargo lifts, with our RX 570 model posting here. Our RX 570 review goes live tomorrow. We’re spacing them out to allow for better per-card depth, having just come off of a series of 1080 Ti reviews (Xtreme, Gaming X).

Our Gigabyte GTX 1080 Ti Aorus Xtreme ($750) review brings us to look at one of the largest video cards in the 1080 Ti family, matching it well versus the MSI 1080 Ti Gaming X. Our tests today will look at the Aorus Xtreme GPU in thermals (most heavily), noise levels, gaming performance, and overclocking, with particular interest in the efficacy of Gigabyte’s copper insert in the backplate. The Gigabyte Aorus Xtreme is a heavyweight in all departments – size being one of them – and is priced at $750, matching the MSI Gaming X directly. A major point of differentiation is the bigger focus on RGB LEDs with Gigabyte’s model, though the three-fan design is also interesting from a thermal and noise perspective. We’ll look at that more on page 3.

We’ve already posted a tear-down of this card (and friend of the site ‘Buildzoid’ has posted his PCB analysis), but we’ll recap some of the PCB and cooler basics on this first page. The card uses a 3-fan cooler (with smaller fans than the Gaming X-type cards, but more of them) and large aluminum heatsink, ultimately taking up nearly 3 PCI-e slots. It’s the same GPU and memory underneath as all other GTX 1080 Ti cards, with differences primarily in the cooling and power management departments. Clock, of course, does have some pre-OC applied to help boost over the reference model. Gigabyte is shipping the Xtreme variant of the 1080 Ti at 1632/1746MHz (OC mode) or 1607/1721 (gaming mode), toggleable through software if not manually overclocking.

Prior to the Ryzen launch, we discovered an issue with GTA V testing that would cause high-speed CPUs of a particular variety to stutter when achieving high framerates. Our first video didn’t conclude with a root cause, but we now believe the game is running into engine constraints – present on other RAGE games – that trigger choppy behavior on those CPUs. Originally, we only saw this on the best i5s – older gen i5 CPUs were not affected, as they were not fast enough to exceed the framerate limiter in GTA V (~187FPS, or thereabouts), and so never encountered the stutters. The newest i5 CPUs, like the 7600K and 6600K, would post high framerates, but lose consistency in frametimes. As an end user, the solution would be (interestingly) to increase your graphics quality, resolution, or otherwise bring FPS to around the 120-165 mark.

Then Ryzen came out, and then Ryzen 5 came out. With R5, we encountered a few stutters in GTA V when SMT was enabled and when the CPU was operating under conditions permitting the CPU to achieve the same high framerates as Intel Core i5-7600K CPUs. To better illustrate, we can actually turn down graphics settings to a point of forcing framerates to the max on 4C/8T R5 CPUs, relinquishing some of the performance constraint, and then encounter hard stuttering. In short: A higher framerate overall would result in a much worse experience for the player, both on i5 and R5 CPUs. The 4C/8T R5 CPUs exhibited this same stutter performance (as i5 CPUs) most heavily when SMT was disabled, at which point we spit out a graph like this:


  VigLink badge