Understanding SSD Controller Terminology: Overprovisioning & WAF

27 Aug 2013

We've previously written in great detail about the SSD development lifecycle and SSD manufacturing processes, but we've yet to delve into what really drives solid-state drives: Controllers. An SSD is effectively its own, self-contained computer-within-a-computer. It's got a CPU-equivalent in the form of a Flash Storage Processor (or Controller), complete with on-board cache, memory management, low-level firmware, and channels to the NAND Flash modules.


Because an SSD's Flash Storage Processor is effectively a specialized, purpose-built CPU, we'll limit this article to a few key, top-level aspects of controllers; we'll break the controller's numerous complex elements into several individual articles, with this one focusing on overprovisioning, write amplification factor, and video content.

Overprovisioning and Write Amplification Factor (WAF) were selected as our key topics for a few reasons: First, WAF plays a massive role in the longevity of the NAND Flash as it ages, directly impacting the usable life of the drive; second, the overprovisioned space on a drive dictates the available user space and performance. When helping our system builders select an SSD, our two most common questions have been "What's the endurance like?" and "Why is the capacity different between competing drives? Why is one 256GB and the other 240GB?" This article answers both of those questions.

Let's hit the video content first:

Read more: Understanding SSD Controller Terminology: Overprovisioning & WAF

NVidia Silicon Failure Analysis Lab Video Tour

05 Aug 2013

A significant aspect of any silicon engineering lifecycle is chip post-mortem, providing engineers with insight to a chip's inadequacies and specific points of failure; as the manufacturing process continues to decrease in physical size (we're nearing sub-20nm on most commercial microprocessors), increasingly powerful scopes are required to analyze internal electrical defects.

nvidia-systemThis is how nVidia does system building: A custom Danger Den box outfitted with custom sleeving and lighting.

NVidia Silicon Technology Failure Analysis Director Howard Marks gave us a walkthrough of some of the lab's multimillion-dollar analytical tools, seen in the video below. If this sort of content interests you, we'd also recommend checking out our recent walkthrough of Kingston's automated SMT lines and shipping robotics facilities.

Read more: NVidia Silicon Failure Analysis Lab Video Tour

The SMT Process at Kingston: How RAM & SSDs Are Made

01 Aug 2013

We recently visited Kingston Technologies' headquarters in Fountain Valley, CA, where we were able to tour on-site production facilities and talk about RAM & SSD assembly. Most of our time was spent exploring labs and wandering through the aisles of SMT lines, finally concluding with a trip to the shipping robotics and packaging room. This article and accompanying video give an insider walkthrough of SMT lines and the memory testing & assembly process, providing a bit of insight as to "how it's made."


Anyone producing board-mounted hardware (memory, motherboards, video cards) is using SMT lines (Surface-Mount Technology) at some point in the process. SMT lines use largely standardized, industry-wide machinery to assemble a product, solder components to it, electrically test the product, and eventually spit out the unit for shipping and/or further testing. Because SMT lines are standardized, they can be configured to produce multiple types of products -- the same lines that produce RAM can also be used for motherboards (though are configured differently).

Kingston Senior Technology Manager Mark Tekunoff gave us a walkthrough of the SMT lines and packaging machinery in their Fountain Valley, California facilities; the SMT lines weren't in operation when we were there, unfortunately, but we still show the equipment and Tekunoff explains how it all works. The packaging robotics (toward the end of the video) are in full operation and are quite cool to see in action, so definitely check those out.

As an aside, you may find our previous collaborative effort with Kingston/LSI of interest, which explains the design-dev-test-fab lifecycle of an SSD.

Read more: The SMT Process at Kingston: How RAM & SSDs Are Made

Hands-On: MSI's High-End Gaming Laptop Line-up - GE40, GS70, More

27 Jul 2013

As part of our extended stay in California, we were able to visit MSI's City of Industry headquarters and get a walkthrough of all their upcoming and released gaming products. A number of you have posted questions on our forums pertaining to gaming laptops lately, and appropriately, we spent the most time looking at MSI's large selection of gaming portables.


Let's get right to it, starting with an overview of some high-end gaming notebooks, then moving to MSI's new "Stealthy" GS70 system. We're looking at MSI's GE40, GE70, GT70 Dragon Edition 2, GX70, and GS70 gaming laptop specs and offering some hands-on impressions; let us know in the comments below if you've got questions.

Read more: Hands-On: MSI's High-End Gaming Laptop Line-up - GE40, GS70, More

Picking the Best Gaming Motherboard - Haswell & AMD - 2013 Edition

08 Jul 2013

We previously published an article that gave a top-level overview of motherboard selection for new PC builds. In this year's revised edition, we'll approach the topic with a bit more depth than previously and will account for Intel's Haswell CPUs and AMD's FX line of CPUs.


Selecting the best motherboard for your gaming PC build is important to ensure upgradability going forward, access to Haswell/AMD overclocking features, and overall system stability. Chipset selection is tied-at-the-hip with motherboard selection, but if you need help finding the right chipset, check out these previous two articles (Intel - Haswell; AMD - FX).

Read more: Picking the Best Gaming Motherboard - Haswell & AMD - 2013 Edition

Silicon Dies: Explaining OC Editions & the Bin-Out Process - CPUs, RAM, GPUs

01 Jul 2013

Toward the final steps of silicon fabrication, individual dies and NAND Flash modules are tested for frequency and voltage tolerance, among other things; the stability (or volatility) of the silicon chip is gauged within a spec range, then the factory bins-out the chip for use in specific product lines. Some chips outperform the target spec, some underperform - this talks about what's done with those units.


This article will discuss the process of binning-out silicon dies and Flash modules for use in your hardware. Silicon is not created equal, so some units will perform noticeably better than others, and some will far-and-away exceed their expectations. The goal here is to explain why certain products (K-SKU OC editions, for instance) have a higher threshold for frequency and voltage tolerance, have higher overall stability, and run at more thermally-sound temperatures. Is this information going to make your computer faster? No, but it's cool to know, and more importantly, it can inform your purchasing decisions in the future.

Let's dive into it!

Read more: Silicon Dies: Explaining OC Editions & the Bin-Out Process - CPUs, RAM, GPUs