Hardware Guides

We're putting the AMD RX 480 under water. Our GTX 1080 Hybrid project revealed significant improvements to overclock stability and lowered the 1080's thermals by 100%, an important boost versus the Founders Edition ($700). This endeavor opened our eyes to new means of testing component limits, and makes for a fun DIY project to push new hardware to its absolute peak performance – or make it die trying.

Following our RX 480 endurance and thermal findings, we believe it's possible to improve thermals, reduce overall power consumption (by eliminating the need for a fan spinning at 4000+ RPM), and significantly cut noise output. The overclocked RX 480 was able to sustain its 1340MHz core only because we ran the fan so fast, and by switching to a liquid cooler (powered externally, not by the video card), we'll free-up some power for the core and memory. This will also allow us to reduce overall fan RPMs on our mod's VRM fan, hopefully cutting noise levels to something lower than the ~55-60dB output experienced in our overclocking test. Our overclock, although reasonable, is entirely unbearable because of its high noise output and would be unacceptable for any real-world user or home.

We're fixing that.

Anyone who's already seen our exhaustive RX 480 review & benchmark is likely aware of our new noise testing and fan speed vs. time/frequency plots. The video was embedded in that review, but it's worth discussing in greater depth.

The test is a mix of subjective and objective noise analysis. The decibel testing was conducted prior to getting on camera, with a different setup than is shown, but we moved the bench for demonstration purposes (into the video set). Our noise testing methodology is detailed further below. As for the subjective testing – that's the new part.

Subjective noise analysis of cards is important, as our raw decibel output values do not tell the full story (and we don't presently have a good, data-hardened way to plot frequency spectrum analysis). Two fans that operate at 50dB may have completely different noises. One fan might be high pitch in nature – or maybe it's got a high pitched whine accompanying the normal low-frequency whirring – while another fan is low pitch. Depending on the user, the lower pitch fan (despite being equally loud in dB output) will likely be more bearable than an incessant whine.

And so we've spawned these noise tests. We're mostly looking at the new RX 480 8GB card ($240), but added the GTX 1070 FE while at it.

This is a test that's been put through the paces for just about every generation of PCI Express, and it's worth refreshing now that the newest line of high-end GPUs has hit the market. The curiosity is this: Will a GPU be bottlenecked by PCI-e 3.0 x8, and how much impact does PCI-e 3.0 x16 have on performance?

We decided to test that question for internal research, but ended up putting together a small report for publication.

This is primarily a video project that revisits our popular SSD Architecture post from 2014. All of that content remains relevant to this day – SSD architecture has not substantially changed at a low level – but it's been deserving of a refresh. NAND Flash comprises the actual storage component of the SSD, and impacts more than just capacity; endurance, speed, and the cost-per-GB metric are all impacted by NAND Flash selection. The industry has slowly reached parity between TLC and MLC NAND devices for the mainstream and gaming segments, with VNAND getting a steady push through Samsung's channels. As for how MLC and TLC actually work, though, we turn to our content.

With this update, we've introduced a 3D animation to help visualize the complexities of voltage states and program/erases occurring on the disk actively. The original graphics and text of our architecture article can be found on this page.

Our GTX 1070 SLI benchmarking endeavor began with an amusing challenge – one which we've captured well in our forthcoming video: The new SLI bridges are all rigid, and that means cards of various heights cannot easily be accommodated as the bridges only work well with same-height cards. After some failed attempts to hack something together, and after researching the usage of two ribbon cables (don't do this – more below), we ultimately realized that a riser cable would work. It's not ideal, but the latency impact should be minimal and the performance is more-or-less representative of real-world SLI framerates for dual GTX 1070s in SLI.

Definitely a fun challenge. Be sure to subscribe for our video later today.

The GTX 1070 SLI configuration teetered in our test rig, no screws holding the second card, but it worked. We've been told that there aren't any plans for ribbon cable versions of the new High Bandwidth Bridges (“HB Bridge”), so this new generation of Pascal GPUs – if using the HB Bridge – will likely drive users toward same-same video card arrays. This step coincides with other simplifications to the multi-GPU process with the 10-series, like a reduction from triple- and quad-SLI to focus just on two-way SLI. We explain nVidia's decision to do this in our GTX 1080 review and mention it in the GTX 1070 review.

This GTX 1070 SLI benchmark tests the framerate of two GTX 1070s vs. a GTX 1080, 980 Ti, 980, 970, Fury X, R9 390X, and more. We briefly look at power requirements as well, helping to provide a guideline for power supply capacity. The joint cost of two GTX 1070s, if buying the lowest-cost GTX 1070s out there, would be roughly $760 – $380*2. The GTX 1070 scales up to $450 for the Founders Edition and likely for some aftermarket AIB partner cards as well.

Rounding-out our Best Of coverage from Computex 2016 – and being written from a plane over the Pacific – we're back to recap some of the major GTX 1080 AIB cards from the show. AMD's RX480 was only just announced at Computex, and so board partner versions are not yet ready (and weren't present), and the GTX 1070 only had one card present. For that reason, we're focusing the recap on GTX 1080 GP104-400 video cards from AIB partners.

Until a point at which all of these cards have been properly in our hands for review in the lab, we'd recommend holding off on purchases – but we're getting there. We've already looked at the GTX 1080 reference card (“Founders Edition,” by new nomenclature) and built our own GTX 1080 Hybrid. The rest will be arriving soon enough.

For now, though, here's a round-up of the EVGA, ASUS, Gigabyte, and MSI AIB GTX 1080s at Computex. You can read/watch for more individualized info at each of these links:

We've made it a habit to cover the best gaming cases at every CES show for a few years now, but our (first ever) visit to Computex has revealed something: Computex is a huge show for PC hardware; bigger than CES, in many ways, and that includes new case unveils.

Following our coverage for Computex 2016, this gaming case round-up highlights some of the best PC towers of the year. Several of these cases aren't yet on sale – and some may never be – but the majority of manufacturers are targeting a 2H16 launch for their enclosures. For this best cases of Computex 2016 round-up, we look at SilverStone, Lian-Li, In-Win, Be Quiet!, Corsair, Thermaltake, and Rosewill. Other manufacturers were present in droves – Nanoxia, Cooler Master, Deep Cool, and others – but these were the stand-out cases of booths we visited.

No particular order to the below listing. "HM" stands for "Honorable Mention."

Vendor Battles are our newest form of lighthearted, fun, but informational content. We conducted our first Vendor Battle at PAX East 2016, starring EVGA, MSI, and PNY. Now, at Computex, we turned to the case manufacturers: “You have one minute. Tell me why I should buy your case and not the next manufacturer's.”

It was a fun battle, particularly because all the case teams seem to know each other. George Makris of Corsair opened, followed by Shannon Robb of Thermaltake, and then Christoph Katzer of Be Quiet! All three well-known companies in the space.

Here's the showdown video – direct quotes below.

NZXT's manufacturing birthplace is in Shenzhen, China, but the company moved to a new, high-end facility in 2000. The company now works with Godspeed Casing, a factory that NZXT is largely responsible for 'raising' from the ground-up. Over 1200 employees work at the factory, working with tens of millions of dollars of equipment on a daily basis. One of the largest, most impressive machines in the factory is the SAG-600, which can apply upwards of 600 metric tonnes of downward force to create case paneling. That machine alone costs $2 million (USD) and towers a few times over its operator.

This NZXT factory tour is part of our Asia trip, and marks the second stop in our extended “How Cases are Made” coverage. In-Win was the first factory we visited, based in Taoyuen, Taiwan, and we've now spent a day in China for NZXT's facilities. We'll soon be back in Taipei for further Computex and local factory coverage.

Let's look at NZXT's setup:

Just as we made it into Taiwan, we're already packing to fly to Shenzhen, China for more factory and HQ tours. During the first leg of our three-part Asia trip, the GN team traveled to Taoyuen, Taiwan – about an hour outside of Taipei – to visit the In-Win case & paint factories. In-Win is best-known for fronting insane projects at tradeshows, like the Transformer-inspired H-Tower and 805 Infinity, and all of those cases get made in the factories we visited.

Touring the In-Win case-making factory gave a look into how PC cases are made; we saw injection-molding machines, automated powder coat booths, giant sanding and CNC machines, 3D coordinate projection validators, and more.

Page 1 of 10

  VigLink badge