Hardware Guides

There’s inherent FPS loss when using capture software, GPU-accelerated or otherwise. The best that software vendors can do is try to reduce loss as much as possible, but ideally without sacrificing too much video quality or too much compression capability.

A few months back, AMD finally axed its partnership with Raptr for the cumbersome Gaming Evolved suite. This move to greener – or ‘redder,’ perhaps – pastures immediately left AMD with a hole in its tools suite, namely a competitor to nVidia’s somewhat prolific ShadowPlay software capture tool.

Today, with the AMD ReLive update to the Crimson-brand drivers, AMD’s implemented its own solution to software capture for gameplay. The tool includes manually toggled capture, broadcast/streaming capture, and retroactive capture. This is a direct competitor to the ShadowPlay software from nVidia’s GeForce Experience suite, and performs many of the same functions with the same end objective.

We previously did this comparison with ShadowPlay versus FRAPS and AMD’s GVR, a solution that ultimately was subsumed by Gaming Evolved. It’s taken AMD a while to get back to this point, but ReLive is a fresh recording suite. In GN’s embedded video, we’ve got side-by-side capture comparisons between the two utilities, the impact on framerate when each is active, and a quick analysis of the compression’s efficacy. Much of this will also be contained below, though the quality comparison will require you view the video.

There are two ends to a power supply cable: The device-side and the PSU-side. The device-side of all PC cables is standardized. ATX 24-pin, EPS12V, PCI-e to the GPU, SATA—the wiring is known, and it doesn't change. What isn't standardized, however, is the layout of the PSU-side modular cable headers. Some vendors might use 6-pin connectors for their PSU-side peripheral headers (identical to what's found on PCI-e cables, because it saves cost), others will opt instead for a wide-format pin-out for the same. Another still could use a bulky 9-pin block for universal connectivity, like some of EVGA's power supplies.

What can't be done, though, is mixing cables between all these units. Or at least, it shouldn't be done. Mixing cables between power supplies can kill them or kill attached components. Not always, but it can -- and when the wiring crosses in exactly the wrong way, the failure will be spectacular. Like ESD, just because you've gotten away with mixing cables doesn't mean you always will. Electricity is not a mystery; we know well how it works, and crossing the wrong wires will damage components.

Following suit with the rest of our Black Friday coverage, including Best SSDs and power supplies, we’ve next rounded-up a few honorable mentions in the motherboard department. We're specifically looking at Intel boards today, as deals on AMD boards seemed a bit scarce this year. With the looming obsolescence of the AM3/AM3+ socket, we elected to not include those boards. You’ll notice that, save for sharing a common thread in socket type (all supporting Intel’s latest Skylake processors), these picks vary quite a bit. Be assured though, these boards all have a place. Whether it’s a minimalist, no-frills gaming machine for medium to high settings or a high-end, performance-minded overclocker, there’s a board here for it.

This list comprises the best gaming Intel motherboards for Cyber Monday (and onward), including Z170, B150, H110, and other motherboards.

The Z170 boards in this list are of proven quality, and do come recommended; however, it is worth mentioning that Z170 is not tantamount to "better." A poorly designed Z170 board is not inherently superior than a well-constructed B150 or H1xx, even at a comparable price. There's more to it than the chipset. If you are curious as to what the differences are between Intel's Skylake chipsets, view this H110, H170, & Z170 guide.

Some PC parts garner a lot more attention than others: CPUs, GPUs, and SSDs have clear, exciting advancements and benefits that can be directly felt by the user. Some components, like PSUs, don’t get the same amount of coverage or excitement.

Nonetheless, power supplies are a vital part of a PC and a good PSU choice can last throughout multiple PCs, whereas a bad PSU choice could lead to strange issues and can even break other components. In anticipation of the holiday season coming up, we’ve once again compiled a list of ranked PSUs at different price points.

This is GN’s list of best power supplies for gaming PCs in 2016, ranging $45 to $300. Note that some of these power supplies will be on sale during Black Friday and Cyber Monday, so keep an eye on anything that looks appealing for your PC build.

Two EVGA GTX 1080 FTW cards have now been run through a few dozen hours of testing, each passing through real-world, synthetic, and torture testing. We've been following this story since its onset, initially validating preliminary thermal results with thermal imaging, but later stating that we wanted to follow-up with direct thermocouple probes to the MOSFETs and PCB. The goal with which we set forth was to create the end-all, be-all set of test data for VRM thermals. We have tested every reasonable scenario for these cards, including SLI, and have even intentionally attempted to incinerate the cards by running ridiculous use scenarios.

Thermocouples were attached directly to the back-side of the PCB (hotspot previously discovered), the opposing MOSFET (#2, from bottom-up), and MOSFET #7. The seventh and second MOSFETs are those which seem to be most commonly singed or scorched in user photos of allegedly failed EVGA 10-series ACX 3.0 cards, including the GTX 1060 and GTX 1070. Our direct probe contact to these MOSFETs will provide more finality to testing results, with significantly greater accuracy and understanding than can be achieved with a thermal imager pointed at the rear-side of the PCB. Even just testing with a backplate isn't really ideal with thermal cameras, as the emissivity of the metal begins to make for questionable results -- not to mention the fact that the plate visually obstructs the actual components. And, although we did mirror EVGA & Tom's DE's testing methodology when checking the impact of thermal pads on the cards, even this approach is not perfect (it does turn out that we were pretty damn accurate, though, but it's not perfect. More on that later.). The pads act as an insulator, again hiding the components and assisting in the spread of heat across a larger surface area. That's what they're designed to do, of course, but for a true reading, we needed today's tests.

With Black Friday, Cyber Monday, and generally the winter holidays coming up, there’s bound to be a lot of sales and (likely) last minute shopping for gifts. With this in mind, we’ve compiled a list of the best mechanical gaming keyboards at various price points that we at GN have reviewed and recommended for both gaming and general use.

These keyboards go from basic budget keyboards to high-end RGB gaming keyboards, all of which are mechanical. Besides, there’s not much in the way of membrane keyboards lately -- the Logitech G213 and Corsair K55 pretty much round those out.

Here’s the shortlist:

Best Gaming Video Cards Under $200 (2016)

By Published November 15, 2016 at 2:23 pm

So begin our buyer's guides for the season. The first of our Black Friday & holiday buyer's guides is focusing on the top video cards under $200, highlighting ideal graphics cards for 1080p gaming. We've reviewed each of the GPUs used in these video cards, and are able to use that benchmark data to determine top performers for the dollar.

This generation's releases offer, in order of ascending MSRP, the RX 460 ($100), GTX 1050 ($110), GTX 1050 Ti ($140), RX 470 ($170), RX 480 4GB ($200), and GTX 1060 3GB ($200). A few active sales offer rebates and discounts that drop a few noteworthy cards, like the 4GB RX 480 and 3GB GTX 1060, down to below MSRP. The same is true for at least one RX 470.

As we've drawn a clear price line between each of the major GPUs that presently exists in this segment, we're making it a point to specifically highlight cards that are discounted or higher performance per dollar. This is a quick reference guide for graphics cards under $200; for the full details and all the caveats, always refer back to our reviews.

Virtual reality has begun its charge to drive technological development for the immediate future. For better or worse, we've seen the backpacks, the new wireless tether agents, the "VR cases," the VR 5.25" panels -- it's all VR, all day. We still believe that, although the technology is ready, game development has a way to travel yet -- but now is the time to start thinking about how VR works.

NVIDIA's Tom Petersen, Director of Technical Marketing, recently joined GamersNexus to discuss the virtual reality pipeline and the VR equivalent to frametimes, stutters, and tearing. Petersen explained that a "warp miss" or "drop frame" (both unfinalized terminology) are responsible for an unpleasant experience in VR, but that the consequences are far worse for stutters given the biology involved in VR.

In the video below, we talk with Petersen about the VR pipeline and its equivalencies to a traditional game refresh pipeline. Excerpts and quotations are below.

 

EVGA VRM Test Planning: New Thermocouples

By Published November 10, 2016 at 8:30 am

We're working on finalizing our validation of the EVGA VRM concerns that arose recently, addressed by the company with the introduction of a new VBIOS and optional thermal pad solution. We tested each of these updates in our previous content piece, showing a marked improvement from the more aggressive fan speed curve.

Now, that stated, we still wanted to dig deeper. Our initial testing did apply one thermocouple to the VRM area of the video card, but we weren't satisfied with the application of that probe. It was enough to validate our imaging results, which were built around validating Tom's Hardware DE's results, but we needed to isolate a few variables to learn more about EVGA's VRM.

This tutorial walks through the process of installing EVGA's thermal pad mod kit on GTX 1080 FTW, 1070 FTW, and non-FTW cards of similar PCB design. Our first article on EVGA's MOSFET and VRM temperatures can be found here, but we more recently posted thermographic imaging and testing data pertaining to EVGA's solution to its VRM problems. If you're out of the loop, start with that content, then come back here for a tutorial on applying EVGA's fix.

The thermal mod kit from EVGA includes two thermal pads, for which we have specified the dimensions below (width/height), a tube of thermal compound, and some instructions. That kit is provided free to affected EVGA customers, but you could also buy your own thermal pads (~$7) of comparable size if EVGA cannot fulfill a request.

Page 1 of 13

  VigLink badge