This tutorial walks through the process of installing EVGA's thermal pad mod kit on GTX 1080 FTW, 1070 FTW, and non-FTW cards of similar PCB design. Our first article on EVGA's MOSFET and VRM temperatures can be found here, but we more recently posted thermographic imaging and testing data pertaining to EVGA's solution to its VRM problems. If you're out of the loop, start with that content, then come back here for a tutorial on applying EVGA's fix.

The thermal mod kit from EVGA includes two thermal pads, for which we have specified the dimensions below (width/height), a tube of thermal compound, and some instructions. That kit is provided free to affected EVGA customers, but you could also buy your own thermal pads (~$7) of comparable size if EVGA cannot fulfill a request.

NZXT H440 Re-Re-Refresh: H440 Hyper Beast

By Published November 02, 2016 at 3:59 pm

NZXT's H440 came out a few years ago to critical acclaim, including kind words from our own site, and has stuck around since. The case has been rehashed a few times since launch, including an H440v2 iteration (which Newegg calls "H440 Steel") that marginally increased the gap between mesh side panels and the chassis, improving airflow. The case has also been sold with Razer's branding and green underglow LEDs and with an eSports finish.

And it's being re-re-refreshed again today, with a new "Hyper Beast" skin, as sourced from CSGO's M4A1-S. The H440 Hyper Beast edition is going for maximum cheese by limiting its production run to 1337 units, each numbered with a badge. Unit #1337, of course, would be the one to want.

We received a shipment of EVGA GTX 1080 FTW cards today and immediately deployed them in our test bench. The cards have undergone about 8 hours of burn-in on the 1080 FTW without thermal pads so far, though we've also got the 1080 FTW with thermal pads for additional testing. In the process of testing this hardware, GamersNexus received a call from EVGA with pertinent updates to the company's VRM temperature solution: The company will now be addressing its VRM heat issues with a BIOS update in addition to the optional thermal pads replacement. We have briefly tested each solution. Our finalized testing will be online within a few days, once we've had more time to burn-in the cards, but we've got initial thermographic imaging and decibel level tests for now.

EVGA's BIOS update will, as we understand it, only modify the fan speed curve so that it is more aggressive. There should not be additional changes to the BIOS beyond this, it seems. Presently, the GTX 1080 FTW tends to max its fans at around ~1600RPM when under load (maxes at around ~1700RPM). This results in a completely acceptable GPU diode reading of roughly 72C (or ~50C delta T over ambient), but doesn't allow for VRM cooling given the lack of thermal interface between the PCB back-side and the backplate. The new fan speed will curve to hit 2200RPM, or a jump to ~80% in Afterburner/Precision from the original ~60% (max ~65%). We've performed initial dB testing to look at the change in noise output versus the fan RPM. Our thermal images also look at the EVGA GTX 1080 FTW with its backplate removed (a stock model) at the original fan RPM and our manually imposed 2200RPM fan speed.

We've had enough suggestions lately to revisit older hardware that we thought it was time. The GTX 770 2GB cards first shipped in May of 2013, marking the GPU now three years old, and launched at a $400 price-point. That makes the GTX 1070 the most linear upgrade -- it's a direct path in nomenclature and in price, also around $400 -- but it's not alone in this market. The RX 480 assuredly outperforms the GTX 770, as does the GTX 1060. More curious, though, is the once mighty GTX 770's performance in relation to the GTX 1050, RX 460, and 1050 Ti, all of which can be had below $140.

It's probably about time for an upgrade for GTX 770 owners. Don't get us wrong: The GTX 770 2GB can still hold its ground just fine, but only with the assistance of settings reductions when playing modern AAA titles. Even for "just" 1080p performance, the likes of Ultra and High aren't necessarily feasible in games like Battlefield 1.

Resolution is a worthwhile side-point, too. Last time we talked about the GTX 770 in depth, 1080p was really the only resolution worth considering from a review standpoint. We certainly didn't have 4K monitors in the lab yet, and 1440p was still only a small fraction of the market. With 1920x1080 holding more than 80% of the gaming market today, it's easy to believe that the share was even greater in 2013.

Things are changing, though, and the industry is evolving. We talked about this in our GTX 1060 and RX 480 reviews, both devices that are capable of 1440p gaming with relatively high graphics settings. Considering the price of each card, around $240-$250 for the bottom line devices, that's a major accomplishment for this year's GPU architectures.

This episode of Ask GN sets forth to discuss GPU/CPU choke-points and bottlenecks, why those happen, and how they can be prevented. We also address viewer/reader questions on Samsung vs. Micron memory used in GTX 10 series cards -- particularly the 1070 cards -- and OEM/supply driven manufacturing.

Some additional information is provided regarding overclock validation, notebook OEMs, the Nintendo Switch, and some asides. One such side note addresses a question as to whether or not reviewing products "gets boring."

Excellent topics overall for this video!

Owners of Gigabyte motherboards in the list defined below will now be able to flash BIOS for next-gen Intel CPU support. This includes Kaby Lake processors, which use the same socket type as found on the Z170, H170, H110, and B150 motherboards. Owners or new buyers of these motherboards can make a migration with BIOS updates, as have now been released by a handful of motherboard manufacturers.

A new series of Kraken liquid coolers from NZXT marks the first time that Asetek has afforded a customer the responsibility of designing custom electronics, which NZXT deploys for RGB LED control and future firmware revisions. The coolers use Gen5 Asetek pumps with custom-built pump blocks, "infinity mirror" pump plates, and NZXT fans that differentiate the X42, X52, and X62 line-up from Corsair's nearby competition. Corsair most heavily competes in the 240mm market -- that'd go up against the X52 -- where the H100iV2 is priced at ~$105 right now, though the H90 also competes with the X42.

Our disassembly of the Kraken X42 liquid cooler showed the device's internals, explained that the high-quality of design and component selection made for a promising set of tests, but didn't dive into the details. This review looks at the temperature performance and noise performance, along with a noise-temperature curve, of the new NZXT Kraken X62, X52, and X42 liquid coolers, particularly matched against the H100iV2. We've got the EK WB Predator XLC 280 as a high-end alternative, alongside the Be Quiet! Dark Rock 3 as a $50 air cooler, just to provide a baseline.

EVGA has been facing thermal issues with its ACX series coolers, as pointed out by Tom's Hardware - Germany earlier this week. We originally thought these issues to be borderline acceptable, since Tom's was reporting maximum VRM temperatures of ~107-114C. These temperatures would still allow EVGA's over-spec VRM to function, granted its 350A abilities, as that'd still land the output around 200A to the GPU. A GTX 1080 will pull somewhere around 180A without an extreme overclock, so that was borderline, but not catastrophic.

Unfortunately for EVGA, temperature increases to the VRM have nearly exponential increases in damage. Hitting a temperature greater than 125C on the VRM with EVGA's design could result in MOSFET failure, effectively triggered by a runaway thermal scenario where the casing is blown, and OCP/OTP might not be enough to prevent the destruction of a FET or two. The VRM derates and loses efficiency at this point, and would be incapable of sustaining the amperage demanded by higher power draw Pascal chips.

Logitech G213 Prodigy Membrane Keyboard Review

By Published October 27, 2016 at 4:46 pm

Whenever we get a new keyboard to review, we make a point to put away the regularly used keyboards. It’s easy to gravitate toward what we’re familiar with, and so those things must be put aside for the review. Oftentimes, putting away the usual keyboards is easy since we have worked with a number of good releases lately, but sometimes it’s not so trivial.

Frankly, we expected the latter situation when unboxing the Logitech G213 Prodigy ($70). It’s a rubber dome keyboard, and those don’t get quite the fanfare that mechanical boards do. Setting the keyboard up revealed inclusion of RGB lighting, fully functional media keys, and a tuned force profile on the switches. The G213 also positions itself at a $70 “budget” price-point for an RGB board, but we’ll talk more about that later.

The Titan X Hybrid mod we hand-crafted for a viewer allowed the card to stretch its boost an additional ~200MHz beyond the spec. This was done for Sam, the owner who loaned us the Titan XP, and was completed back in August. We also ran benchmarks before tearing the card down, albeit on drivers from mid-August, and never did publish a review of the card.

This content revisits the Titan XP for a review from a gaming standpoint. We'd generally recommend such a device for production workloads or CUDA-accelerated render/3D work, but that doesn't stop that the card is marketed as a top-of-the-line gaming device with GeForce branding. From that perspective, we're reviewing the GTX Titan X (Pascal) for its gaming performance versus the GTX 1080, hopefully providing a better understanding of value at each price-point. The Titan X (Pascal) card is priced at $1200 from nVidia directly.

Review content will focus on thermal, FPS, and overclocking performance of the GTX Titan X (Pascal) GP102 GPU. If you're curious to learn more about the card, our previous Titan XP Hybrid coverage can be found here:

  VigLink badge