AMD’s Polaris refresh primarily features a BIOS overhaul, which assists in power management during idle or low-load workloads, but also ships with natively higher clocks and additional overvoltage headroom. Technically, an RX 400-series card could be flashed to its 500-series counterpart, though we haven’t begun investigation into that just yet. The reasoning, though, is because the change between the two series is so small; this is not meant to be an upgrade for existing 400-series users, but an option for buyers in the market for a completely new system.

We’ve already reviewed the RX 580 line by opening up with our MSI RX 580 Gaming X review, a $245 card that competes closely with the EVGA GTX 1060 SSC ($250) alternative from nVidia. Performance was on-point to provide back-and-forth trades depending on games, with power draw boosted over the 400 series when under load, or lowered when idle. This review of the Gigabyte RX 570 4GB Aorus card benchmarks performance versus the RX 470, 480, 580, and GTX 1050 Ti and 1060 cards. We're looking at power consumption, thermals, and FPS.

There’s no new architecture to speak of here. Our RX 480 initial review from last year covers all relevant aspects of architecture for the RX 500 series; if you’re behind on Polaris (or it’s been a while) and need a refresher on what’s happening at a silicon level, check our initial RX 480 review.

It’s been a few months since our last PC build--in fact, it was published well before Ryzen was released. For our first post-Ryzen build, we’ve pulled together some of the components we liked best in testing to make an affordable ultrawide gaming machine. As we did in January, we pulled parts out of inventory and actually assembled and tested this PC to back up our recommendations--we’ll try to continue doing this going forward.

This gaming PC build is priced at just over $1000 -- about $1200, depending on rebates -- and is made for UltraWide 3440x1440 gaming. Our goal is to take reasonably affordable parts and show that UltraWide 1440p gaming is feasible, even while retaining high settings, without buying the most expensive GPUs and CPUs on the market. We’re only using parts in this build that we actually have, so that partially dictates cost (yes, you might be able to do some things cheaper -- like the motherboard), but it also means that we’ve had time to build, validate, and use the system in a real environment. In these early days of Ryzen as a new uarch, that’s important. We’ve done the hard work of troubleshooting a functional build. All you’d have to do is assemble it, configure BIOS, and go.

As a note: This build is also readily capable of production workloads. CUDA acceleration on the GTX 1070 will work well for Premiere renders, and the CPU thread-count will assist in CPU acceleration (like for streaming).

AMD’s got a new strategy: Don’t give anyone time to blink between product launches. The company’s been firing off round after round of products for the past month, starting with Ryzen 7, then Ryzen 5, and now Polaris Refresh. The product cannon will eventually be reloaded with Vega, but that’s not for today.

The RX 500 series officially arrives to market today, primarily carried in on the backs of the RX 580 and RX 570 Polaris 10 GPUs. From an architectural perspective, there’s nothing new – if you know Polaris and the RX 400 series, you know the RX 500 series. This is not an exciting, bombastic launch that requires delving into some unexplored arch; in fact, our original RX 480 review heavily detailed Polaris architecture, and that’s all relevant information to today’s RX 580 launch. If you’re not up to speed on Polaris, our review from last year is a good place to start (though the numbers are now out of date, the information is still accurate).

Both the RX 580 and RX 570 will be available as of this article’s publication. The RX 580 we’re reviewing should be listed here once retailer embargo lifts, with our RX 570 model posting here. Our RX 570 review goes live tomorrow. We’re spacing them out to allow for better per-card depth, having just come off of a series of 1080 Ti reviews (Xtreme, Gaming X).

Our Gigabyte GTX 1080 Ti Aorus Xtreme ($750) review brings us to look at one of the largest video cards in the 1080 Ti family, matching it well versus the MSI 1080 Ti Gaming X. Our tests today will look at the Aorus Xtreme GPU in thermals (most heavily), noise levels, gaming performance, and overclocking, with particular interest in the efficacy of Gigabyte’s copper insert in the backplate. The Gigabyte Aorus Xtreme is a heavyweight in all departments – size being one of them – and is priced at $750, matching the MSI Gaming X directly. A major point of differentiation is the bigger focus on RGB LEDs with Gigabyte’s model, though the three-fan design is also interesting from a thermal and noise perspective. We’ll look at that more on page 3.

We’ve already posted a tear-down of this card (and friend of the site ‘Buildzoid’ has posted his PCB analysis), but we’ll recap some of the PCB and cooler basics on this first page. The card uses a 3-fan cooler (with smaller fans than the Gaming X-type cards, but more of them) and large aluminum heatsink, ultimately taking up nearly 3 PCI-e slots. It’s the same GPU and memory underneath as all other GTX 1080 Ti cards, with differences primarily in the cooling and power management departments. Clock, of course, does have some pre-OC applied to help boost over the reference model. Gigabyte is shipping the Xtreme variant of the 1080 Ti at 1632/1746MHz (OC mode) or 1607/1721 (gaming mode), toggleable through software if not manually overclocking.

Today we have some more hardware sales for the weekend, including a SeaSonic 620W PSU, Gigabyte GTX 1070, and ASUS Z270 motherboard. An Intel NVMe SSD makes a special appearance in the listing. Sales are limited right now, particularly on GPUs given the precipitous launch cycle, but there are still a few active deals out there.

In light of both the House and Senate voting to reverse forthcoming privacy regulations, interest in privacy measures that can be taken by the end-user are no doubt piqued. While there is no comprehensive solution to end all privacy woes—outside of, you know, stringent privacy laws—there are a few different steps that can be taken. A VPN (Virtual Private Network) is the big one, although they come with a few of their own caveats. The Tor software offers the most ways to anonymize a user’s online presence and more, although it can be involved. Smaller actions include adjusting DNS settings and using the HTTPS Everywhere extension.

Read on, as we will delve into these in a bit more detail. This guide serves as a tutorial to setting up a VPN and protecting your privacy online.

Prior to the Ryzen launch, we discovered an issue with GTA V testing that would cause high-speed CPUs of a particular variety to stutter when achieving high framerates. Our first video didn’t conclude with a root cause, but we now believe the game is running into engine constraints – present on other RAGE games – that trigger choppy behavior on those CPUs. Originally, we only saw this on the best i5s – older gen i5 CPUs were not affected, as they were not fast enough to exceed the framerate limiter in GTA V (~187FPS, or thereabouts), and so never encountered the stutters. The newest i5 CPUs, like the 7600K and 6600K, would post high framerates, but lose consistency in frametimes. As an end user, the solution would be (interestingly) to increase your graphics quality, resolution, or otherwise bring FPS to around the 120-165 mark.

Then Ryzen came out, and then Ryzen 5 came out. With R5, we encountered a few stutters in GTA V when SMT was enabled and when the CPU was operating under conditions permitting the CPU to achieve the same high framerates as Intel Core i5-7600K CPUs. To better illustrate, we can actually turn down graphics settings to a point of forcing framerates to the max on 4C/8T R5 CPUs, relinquishing some of the performance constraint, and then encounter hard stuttering. In short: A higher framerate overall would result in a much worse experience for the player, both on i5 and R5 CPUs. The 4C/8T R5 CPUs exhibited this same stutter performance (as i5 CPUs) most heavily when SMT was disabled, at which point we spit out a graph like this:


We’re reviewing the new MSI GTX 1080 Ti Gaming X card today, priced at $750 and positioned as one of the highest-performing gaming cards on the market. These tests will extensively look at thermals, given that that’s the primary differentiator between same-GPU video cards, and then look at gaming performance (in FPS) versus the Reference card and our Hybrid mod FE card. Part of our thermal testing will include performance analysis with and without a backplate. Noise levels are going to be the same as the last Twin Frozr card we tested, which can be found here.

This generation of GTX 1080 Ti cards has gone big. MSI’s Gaming X is already large, but the Gigabyte unit that we’re reviewing next is similarly big in the multi-slot department. The Gaming X uses MSI’s known twin-frozr cooler, with modifications to the underlying aluminum heatsink to increase surface area and fin density. Noise output is therefore identical to the noise output of previous Twin Frozr coolers we reviewed for the 10-series, including the GTX 1080 non-Ti Gaming X.

MSI ships the 1080 Ti Gaming X at three different frequencies, configurable through software: OC mode runs at 1683MHz boost and 1569MHz base, Gaming mode runs at 1657MHz boost and 1544MHz base, and silent mode runs at 1582 and 1480MHz.


We’ve been one of the most active in modding newly-launched GPUs with “hybrid” cooling solutions, and even recently began running thermal tests on VRM components alongside said mods. Before we ever did hybrid mods, NZXT launched its G10 bracket – back in 2013 – to tremendous success and adoption. That adoption died off over time, mostly due to new GPU launches that weren’t clear on compatibility, and NZXT eventually was met by competition from Corsair’s HG10.

AMD R5 1600X, 1500X Review: i5's Fading Grasp

By Published April 11, 2017 at 9:00 am

Following our in-depth Ryzen VR benchmark (R7 1700 vs. i7-7700K with the Rift + Vive), we immediately began compiling results for the concurrent R5 test efforts by GN Sr. Editor Patrick Lathan. Working together, we were able to knock-out the VR benchmarks (check those out here – some cool data), Ryzen Revisit piece, and today’s R5 reviews.

Both the R5 1600X ($250) and R5 1500X ($190) CPUs are in for review today, primarily matched against the Intel i5-7500 and i5-7600K. For comparison reasons, we have still included other CPUs on the bench – notably the i7-7700K and R7 1700, just to give an understanding of what the extra ~$70-$130 gets.

For anyone who hasn’t checked in on our content since the initial Ryzen reviews, we’d strongly encourage checking the Ryzen Revisit piece for a better understanding of how the scene has changed since launch. That revisit looks at Windows updates (and debunks some myths), EFI updates, and memory overclocking impact on Ryzen performance.

Although we have rerun the R7 gaming benchmarks with higher memory frequency (thanks to GSkill and Geil for providing B-die kits), we have not yet rerun them in synthetic tests. The 2933MHz frequency, as a reminder, was a hard limitation on our test platforms in the initial round of R7 reviews.

We will be including that data (albeit truncated) in our new tests, alongside Intel retests for the same games. For now, though, we’re reviewing the R5 1600X and R5 1500X CPUs in the Ryzen family, priced at $250 and $190, respectively.

  VigLink badge