Intel’s past few weeks have seen the company enduring the ire of a large portion of the tech community, perhaps undeservedly in some instances -- certainly deservedly in others. We criticized the company for its initial marketing of the 7900X – but then, we criticize nearly everyone for marketing claims that borderline on silly. “Extreme Mega-Tasking,” for instance, was Intel’s new invention.

But it’d be folly to assume that Skylake-X won’t perform. It’s just a matter of how Intel positions itself with pricing, particularly considering the imminent arrival of Threadripper. Skylake-X is built on known and documented architecture and is accompanied by the usual platform roll-out, with some anomalies in the form of Kaby Lake X's accompaniment on that same platform.

Today, we're reviewing the Intel Core i9-7900X Skylake X CPU, benchmarking it in game streaming (Twitch, YouTube) vs. Ryzen, in Blender & Premiere rendering, VR gaming, and standard gaming.

Although it may feel like one GTX 1080 Ti isn’t too different from the next, that’s only “true” when comparing the least meaningful metric: Framerate. Once we’ve established a baseline framerate for the actual GPU – that is, GP102 – there’s not going to be a whole lot of difference between most partner cards. The difference is in thermals and noise, and most people don’t go too in-depth on either subject. For our testing, we look at thermal performance on various board components (not just the GPU), we look at noise, and we look at noise-normalized thermal performance (every card at 40dBA) for cooling efficiency testing.

EVGA’s SC2 Hybrid is an SC2 in every aspect except for cooling. The PCB is the same, the clocks are the same, and so the gaming performance is the same. For this reason alone, there’s no point to testing FPS. If framerates are all you care about, check our SC2 review.

Our approach to reviewing the MSI GE72 7RE gaming laptop has been more drawn-out than normally, as we’ve individually run tests for FPS performance and for the impact of pre-installed software on the machine. Today, we’re combining all of those numbers into our final review of the MSI GE72 7RE notebook and its 1050 Ti & i7-7700HQ hardware, coming to an ultimatum on the product as a whole.

The MSI GE72 7RE Apache Pro runs a 17.3” display, making for what is an abnormally large form factor for a 1050 Ti, and is able to accommodate a larger keyboard as a result. It’s not a perfect keyboard, as we’ll discuss in the video, but it does have a numpad and most standard keys. This larger form factor is also critical for the sprawling cooling solution, which makes use of the additional area to spread out its heatpipes and dual-fan cooling. It’s a trade-off, as always: A bigger laptop does mean better cooling, but a 1050 Ti does sort of seem the perfect fit for a 14-15.6” machine. From experience, we can say that you won’t be opening this display in an economy seat on an airplane – but if that’s not how the laptop is being used, you end up with what is still a slim, fairly light option.

Our model included a 128GB SSD from Toshiba (but supply changes, so that’s not a guaranteed supplier), 1TB HDD, 2x8GB DIMMs, the 1050 Ti, and an i7-7700HQ. The price for this unit, which we had on loan, would run around $1200-$1300.

MSI’s GTX 1080 Ti Armor card piqued our attention for its weak stock cooler and non-reference PCB: The card, at $700, appears to be the closest we’ll get to a bare 1080 Ti PCB sale. It’s an ideal liquid cooling candidate, particularly given the overwhelmingly negative user reviews pertaining to the card’s propensity to overheat. The photos made the Armor look like a Gaming X PCB -- something we praised in our PCB & VRM electrical analysis -- but with a GTX 1070 class cooler stuck onto it. If that were the case, it’d mean the 1080 Ti Armor would perform dismally in thermals when tested with its stock cooler, but could make for a perfect H2O card.

We decided to buy one and find out why the MSI Armor had such bad user reviews, and if it’d be possible to turn the card into the best deal for a liquid-cooled 1080 Ti.

The Thermaltake Core P3 ($100) is one of the more unusual cases we’ve tested: it’s a skeleton case with only two sides, one of which is entirely transparent. This is a case that could theoretically be used as a normal mid-tower, and it’s not priced unreasonably for that, but its design makes the P3 exposed to anything that approaches it at a slight angle -- pets, kids, potentially dust if floor-bound. It’s also cooled just by ambient circulation, as there’s not support for case fans outside of a radiator mount. The P3 is, however, an ideal display case for colorful systems with elaborate liquid cooling, and it’s also a much cheaper alternative to the open-air test benches that we use every day.

For modders, the P-series (P1, P3, P5, P7) offer a basic and compact foundation on which to build. For display systems or testing, the case takes a backseat to the components, offering itself up as a platform for hot-swapping components or for component display. These are the use cases where the P3 shines.


Corsair’s SPEC-04 ($50) is a new mid-tower aimed squarely at the budget market. The case shares its price and much of its hardware (and tooling) with the aged SPEC-01, but with the alien, angular appearance of the SPEC-ALPHA, channeling the aesthetics of the once-$80 case into an affordable $50 package.

Borrowing tooling from its predecessors, the SPEC-04 is able to ship with a lower price-point, aided further by a stripped-down set of interior accoutrements. The SPEC-04 is a small case, but capable of supporting ATX form factor components. This makes the unit deployable for ultra-budget machines, theoretically perfectly fitting for G4560 users.

Today’s review will heavily analyze the thermals, acoustics / noise levels, and build quality of the Corsair Spec-04 case. We test for thermal throttling and additional fan installation, wherein some time is spent adding +1x 120mm fan to multiple positions in the case.

AMD’s RX 560 continues a trend of refreshing the Polaris line, but with a more notable change than the previous RX 580RX 570 refreshes: The RX 560 fully unlocks itself to 16 CUs, up from the previous 14 CUs of the RX 460. This change (in addition to voltage-frequency changes) instantly accounts for performance increases over the RX 460, theoretically making for a more exciting update than was had with the 580 & 570. That’s not to say that the predecessors of this 500 line were unworthy, but they certainly weren’t eye-catching for anyone who’d followed the 400-series launch.

Our review of the Sapphire RX 560 Pulse OC 4GB ($115) card is the first look at this new low-end line from AMD, updating the entry-level, sub-$120 market (in theory) with fresh competition. The incumbent would be the GTX 1050, which we previously thought a better buy than the RX 460. Today, we’re seeing how that’s changed in seven months.


To catch everyone up on the RX 500 refresh thus far, it’s mostly been a glorified BIOS update to the RX 580 and RX 570 cards, driving higher frequency, permitting higher voltage under OV, and trading more power for some performance. Nothing special, but enough to keep AMD in the game until its eventual Vega launch. We found the RX 580 to be a strong competitor to the GTX 1060, particularly at the price point, though noted that owners of RX 480 series cards shouldn’t bother considering an upgrade – because it’s not one. This 500 series is not meant for owners of the 400 series. Tune out until Vega, Volta, or high-end Pascal makes sense.



Sapphire’s RX 560 Pulse OC has one of the weakest cooling solutions we’ve seen of late, but – as we learn in our VRM+VRAM temperature testing – it’s sufficient for this type of card. A low-end GPU doesn’t draw much power, and so Sapphire skates by with its MagnaChip Semiconductor MDU1514 + MDU1517 3-phase power design.

As this content is relatively straight-forward, given the low price, let’s dive straight into testing.

Fractal’s Celsius S36 debuts alongside the company’s S24, coolers sized at 360mm and 240mm, respectively. The Celsius series uses an Asetek Gen5 pump, identical to the pump found on the EVGA CLC, NZXT X42/52/62, and Corsair H115i/H100iV2 coolers. This is a semi-custom Asetek solution that’s been loosely customized by Fractal Design, primarily focusing on the addition of G1/4” fittings (rad-side only), on-pump speed tuning, and an on-rad fan hub. It’s not as customized as, say, the NZXT Kraken series, but NZXT’s products also run more expensive. Fractal is looking at a launch price of $120 for the S36 that we’re reviewing today, and $110 for the S24.

Our focuses are on thermals and noise – not that you can focus on much else when talking coolers – with some new testing that looks at normalized noise output. We debuted this testing in our ASUS ROG Strix review and have carried it over to coolers.

Fractal’s coolers use 120mm fans that run a maximum RPM nearing 2000, with variable pump RPM from ~2000~3000. In our testing, though, it seemed a little simpler than that – pump RPM is based on liquid temp, and as we found in our 7700K review (the hottest CPU we've tested), liquid temp never really exceeds 30C. Given Fractal's curve, that means the pump stays at 2000RPM almost all the time. Rather than use software or suggest straight BIOS control – which we prefer – Fractal’s gone with a toggleable pump plate that switches into auto or PWM options. We’ve tested variable pump speeds in the past and haven’t found major differences in cooling efficacy, which is more heavily relegated to the fan spec and radiator size than anything else. This is more of a noise impact. We tested using the default, out-of-box “auto” setting, which kept our pump RPM fixed nearly perfectly at ~1960 throughout the tests (liquid temperature doesn't ramp up enough to push higher).


Fan speeds were manually controlled for the tests, though users could connect the fans to the on-rad hub. More on this in the conclusion.

Let’s get on with the testing, then run through the accessories and conclusion.

One of the most requested additions to our video card testing has been to normalize for noise. Several of you have emailed, tweeted, or tagged us on Reddit to ask for this type of testing, and so we started the process of re-testing some devices to build a database. The idea is to find fan RPM at a fixed dBA output – 40dBA, for example – and then test thermal performance when fans match that noise level. This doesn’t take into account the type of noise, e.g. frequency spectrum analysis, but it’s a good start to a new type of testing. And, honestly, most of these coolers sound about the same pitch/frequency (subjectively) with regard to frequency output.

The ASUS ROG Strix 1080 Ti review is our first to introduce normalized noise testing, and it’s an interesting card to start us off. We’ll talk more about that specific testing approach lower down.

Silverstone’s RL06 case is divided into four SKUs: SST-RL06BR and SST-RL06WS, with -W and -PRO versions of both. Our review sample is the SST-RL06WS-PRO ($75), which means it’s white with silver trim (WS) and comes with 3x 120mm white LED fans (PRO). BR is black with red trim, and -W is theoretically exactly the same case without the fancy fans, although there don’t appear to be any available anywhere right now.

The RL06 is a stripped-down case with serious airflow at a budget price. Today, we’re putting it on our bench against the nearby Corsair 270R, Be Quiet Pure Base 600, Fractal Define C, and other options we’ve tested recently. The RL06 is more airflow-focused than noise-focused, giving us something different to analyze than the past few case reviews.

Page 1 of 9

  VigLink badge