Optane is Intel’s latest memory technology. The long-term goal for Optane is for it to be used as a supplemental system memory, caching storage, and primary storage inside PCs. Intel claims that Optane is faster than Flash NAND, only slightly slower than DRAM, has higher endurance than NAND, and, due to its density, will be about half the cost of DRAM. The catch with all of these claims is that Intel has yet to release any concrete data on the product.

What we do know is that Lenovo announced that they will be using a 16GB M.2 Optane drive for caching in a couple of their new laptops during Q1 2017. Intel also announced that another 32GB caching drive should be available later in the year, something we’ve been looking into following CES 2017. This article will look into what Intel Optane actually is, how we think it works, and whether it's actually a viable device for the enthusiast market.

Intel’s i7-7700K Kaby Lake CPU follows-up on Skylake with a microarchitecture that is largely identical, but with key improvements to the process technology. Through what Intel has dubbed “14nm+,” the new process technology has heightened fins and widened the gate pitch, both serving as key contributors to the increased frequency headroom on the 7th Generation Intel Core CPUs. Other key changes, like enablement of finer-tuned frequency switching and AVX settings, theoretically offer better responsiveness to current demand on the CPU. As with most active frequency tuning, the idea is that there’s some power efficiency benefit that is coupled with better overall performance by way of reduced latency between changes.

Kaby Lake CPUs are capable of switching the clock speed at a 1000Hz rate (or once per millisecond), and though we’ve asked for the minimum frequency adjustment per change, we have not yet received a response. AMD recently made similar mentions of this sort of clock adjustment on Ryzen, using the upcoming Zen architecture. More on that later this week.

Today’s focus is on the Intel i7-7700K flagship Kaby Lake CPU, for which we’ve deployed the new MSI Z270 Gaming Pro Carbon ($165) and Gigabyte Z270 Gaming 7 ($240) motherboards. For this Intel i7-7700K review, we’ll be looking at thermal challenges, blender rendering performance, gaming performance, and synthetic applications. Among those, FireStrike, TimeSpy, and Cinebench are included.

gigabyte-aorus-z270x-g7-1  msi-z270-pro-carbon-1

The thermal results should be among the most interesting, for once, though we’ve also found Blender performance to be of noteworthy discussion.

Product availability should begin on January 5, with the official launch today (January 3) for the Intel 7th Gen Core CPU products. Note that some products will not be available until later, like the i3-7350K, which is expected for late January. The i7-7700K will be here once it's available.

There are more than 40 SKUs for the 7th Generation Kaby Lake CPUs, when counting Y-, H-, S-, and U-class CPUs. Starting with the specifications for the 7700K, 7600K, and 7350K CPUs (i7, i5, i3, respectively):

Our full OCAT content piece is still pending publication, as we ran into some blocking issues when working with AMD’s OCAT benchmarking utility. In speaking with the AMD team, those are being worked-out behind the scenes for this pre-release software, and are still being actively documented. For now, we decided to push a quick overview of OCAT, what it does, and how the tool will theoretically make it easier for all users to perform Dx12 & Vulkan benchmarks going forward. We’ll revisit with a performance and overhead analysis once the tool works out some of its bugs.

The basics, then: AMD has only built the interface and overlay here, and uses the existing, open source Intel+Microsoft amalgam of PresentMon to perform the hooking and performance interception. We’ve already been detailing PresentMon in our benchmarking methods for a few months now, using PresentMon monitoring low-level API performance and using Python and Perl scripts built by GN for data analysis. That’s the thing, though – PresentMon isn’t necessarily easy to understand, and our model of usage revolves entirely around command line. We’re using the preset commands established by the tool’s developers, then crunching data with spreadsheets and scripts. That’s not user-friendly for a casual audience.

Just to deploy the tool, Visual Studio package requirements and a rudimentary understanding of CMD – while not hard to figure out – mean that it’s not exactly fit to offer easy benchmarking for users. And even for technical media, an out-of-box PresentMon isn’t exactly the fastest tool to work with.

It’s not yet time to pen a full, in-depth comparison between Intel’s forthcoming Kaby Lake chipsets, including Z270, H270, and whatever may become of the lower-end H- and B- lines. There’s still data we’re waiting on, and won’t have access to for a little while yet. Still, some preliminary Z270 & H270 chipset specs have been reported by Benchlife, including information on PCI-e lane count and HSIO lanes. This coverage follows the same format as our Z170 vs. H170, H110, B150, & Q150 differences article.

If the early information is to be believed, the Kaby Lake-ready platform primarily focuses its efforts on largely minor improvements, like additional HSIO lanes to support a burgeoning PCI-e-enabled SSD market. Z270 will move from Z170’s 26 HSIO (High-Speed I/O) lanes to 30 HSIO lanes, providing an additional 4 lanes for M.2 and PCI-e AICs (add-in cards). H270, meanwhile, will move from H170’s 22 lanes up to parity with the Z-series platform, also hosting 30 HSIO lanes. The additional lanes fall into the category of “general purpose” PCI-e lanes, resulting in the following configuration:

This week's news recap segment features updates from the Super Computing conference 2016, including updates to AMD's GPUOpen and Boltzmann initiatives (ROCm, HIP), an Intel Xeon refresh, and Intel's investment in self-driving cars. Outside of SC16, we also have news pertaining to Lian-Li's (finally) shipping PC-O10 case and Thermalright's AXP-100H Muscle cooler.

The only rumor in this news segment is that of AMD's Summit Ridge naming scheme, which Chip Hell suggested will be branded with numerical 3-5-7 suffixes, similar to Intel's CPU branding. Beyond an allegedly leaked slide, there's no way to validate this rumor -- so take it for what it's worth. It's likely that we'll find out more about Zen at the time of CES, or shortly thereafter. That tends to be when Intel and AMD make some CPU / architecture announcements.

Video below:

This episode of Ask GN addresses reader and viewer questions relating to boost technologies for GPUs (DPM states and GPU Boost), "game mode" for monitors, and a couple questions related to CPU benchmarking. We talk loose plans for Zen tests and scalability of the 2500/2600K Sandy Bridge CPUs in the modern era. Even Nehalem got a few mentions.

Monitor "game modes" presented a topic with which we're not intimately familiar, but some research did grant us enough information to hopefully answer the question in a helpful fashion. The rest, like the boosting functionality on GPUs, is stuff that we've discussed on-and-off in review articles for several months -- it's just now laid-out in a quick Ask GN video.

Owners of Gigabyte motherboards in the list defined below will now be able to flash BIOS for next-gen Intel CPU support. This includes Kaby Lake processors, which use the same socket type as found on the Z170, H170, H110, and B150 motherboards. Owners or new buyers of these motherboards can make a migration with BIOS updates, as have now been released by a handful of motherboard manufacturers.

Dell's XPS 13 Ultrabook equivalent has moved to the new Intel Kaby Lake architecture. For the past few generations, Intel's small gains in IPC and processing performance have been largely overshadowed by the focus on power efficiency increases. NVIDIA and AMD are also on-board with this focus, and all three silicon manufacturers are pushing to use clock-gating, non-planar process, and algorithmic advancements to lower watt draw.

Reductions in TDP and moves by Intel to improve power efficiency (including idle improvements & S0iX) lengthen battery life, a move with which Dell has synergized by increasing battery capacity to 60Wh. The two together should grant a specified 22 hours of battery life on the XPS 13 notebooks; we are not sure the specifics of the methodology used to make that measurement.

Dell's XPS 13 units ship with Intel i3, i7, and i5 Kaby Lake CPUs (Gen 7). Bottom-up, the laptops will host Intel i3-7100U, i5-7200U, or i7-7500U CPUs and will start at $800 with Ubuntu (unclear on Windows price). Display, CPU, and memory choices dictate price scaling, with the displays alone specified at 1080p (minimally) to 3200x1800. This latter resolution is also used by Razer in the new Blade, which we hope to look at within the next month or two.

Dell also noted the following specifications in its press release:

This episode of Ask GN (#28) addresses the concept of HBM in non-GPU applications, primarily concerning its imminent deployment on CPUs. We also explore GPU Boost 3.0 and its variance within testing when working on the new GTX 1080 cards. The question of Boost's functionality arose as a response to our EVGA GTX 1080 FTW Hybrid vs. MSI Sea Hawk 1080 coverage, and asked why one 1080 was clock-dropping differently from another. We talk about that in this episode.

Discussion begins with proof that the Cullinan finally exists and has been sent to us – because it was impossible to find, after Computex – and carries into Knights Landing (Intel) coverage for MCDRAM, or “CPU HBM.” Testing methods are slotted in between, for an explanation on why some hardware choices are made when building a test environment.

This week following IDF has posted several news items for general computing technology and for product announcements. As one might expect, Intel unveiled more Kaby Lake information at its self-titled "Intel Developer Forum," and OCaholic posted a SKU listing for the new Kaby Lake CPUs up to the 7700K. Our news round-up video discusses the limited specifications of the i5-7600K, i7-7700K, lower TDP chips, and Intel's plans for launch.

We also look to the world of peripherals for the Logitech G Pro mouse, equipped with the PMW3366 sensor, and to the world of cases for X2's new "Empire" enclosure.

More in the video or script below, if you prefer:

Page 1 of 9

  VigLink badge