Deepcool has made their mark on the PC hardware industry by including liquid cooling solutions in their cases. Deepcool’s Genome cases had a helical reservoir built into the front of the case. At CES 2017, Deepcool unveiled three new liquid-cooled cases, a show case, and two similar RGB fan sets.

The MF120 and MF120GT are the two new fans. The MF120GT uses a traditional housing design with the LEDs in an “X” pattern across the middle. The MF120 housing implements a frameless design with the RGB LEDs running nearly parallel through the middle. Both models share several properties: the housings are aluminum, the blades have a unique design meant to improve air pressure, they rotate on FDBs, and the fans are PWM adjustable between 500 and 2200 RPM. The plan is to sell 3 fans and a controller for $100 USD, and the system will be controlled through an Android or Apple mobile app. Unfortunately, there are no plans for a Windows desktop control app at the moment.


At the tail-end of our CES 2017 coverage, our visit to the Thermaltake showroom provided a look at upcoming cooling products – as the name might suggest – alongside some spin-offs of existing product lines. The more playful side of the room was outfitted with an original Donkey Kong arcade cabinet look-alike, a case mod by “Thermal Mike” for which we’ll post a separate video, while the rest of the room featured liquid and air cooling products.

Today's focus is on the Thermaltake P1 TG mini-ITX wall-mount enclosure, the Rainbow AIO CLC, and the Engine 27 Sandia-style ($50) cooler.

EVGA’s CES 2017 suite hosted a new set of 10-series GPUs with “ICX” coolers, an effort to rebuff the cooling capabilities of EVGA’s troubled ACX series. The ACX and ICX coolers will coexist (for now, at least), with each SKU taking slightly different price positioning in the market. Although EVGA wouldn’t give us any useful details about the specifications of the ICX cooler, we were able to figure most of it out through observation of the physical product.

For the most part, the ICX cooler has the same ID – the front of the card is nigh-identical to the front of the ACX cards, the LED placement and functionality is the same, the form factor is effectively the same. That’s not special. What’s changed is the cooling mechanisms. Major changes include EVGA’s fundamentally revamped focus of what devices are being cooled on the board. As we’ve demonstrated time and again, the GPU should no longer be the focal point of cooling solutions. Today, with Pascal’s reduced operating voltage (and therefore, temperature), VRMs and VRAM are running at more significant temperatures. Most of the last-gen of GPU cooling solutions don’t put much focus on non-GPU device cooling, and the GPU cores are now efficient enough to demand cooling efforts be diverted to FETs, capacitor banks, and potentially VRAM (though that is less important).

Building-up a semi-custom liquid cooling loop is a bit of a new trend, spawned from a surge in AIO dominance over the market. The ease of installation for AIOs greatly exceeds what’s possible with an open loop, with the obvious loss of some customization and uniqueness. The cooling loss, although present, isn’t necessarily a big factor for the types of buyers interested in AIO CLCs rather than open-loop alternatives. Ever since we saw PNY’s solution years ago, though, and then more recently EVGA’s quick disconnect solution, the market has begun to burgeon with semi-custom loop “CLCs.”

An example of these semi-custom CLCs would be the EK Waterblocks Predator XLC 280 that we benchmarked in our Kraken X62 review. Today’s review also focuses on one of these semi-custom liquid cooling solutions, featuring benchmarks of the Alphacool Eiswolf GPX Pro on a GTX 1080. Our testing looks into thermal performance under baseline conditions (versus a GN Hybrid DIY option), frequency stability and performance, overclocking, and FPS impact. We’ve got a few noise and CPU tests too, though this will primarily focus on the GPU aspect of the cooling. The Alphacool Eiswolf GPX Pro does not work as an out-of-box product, necessitating our purchase of the Alphacool Eisbaer to hook into the system (CPU cooler + radiator). The Eiswolf GPX Pro is a $130 unit, and the Eisbaer cost us ~$145.

This unit was provided by viewer and reader ‘Eric’ on loan for review. Thanks, Eric!

GN reader ‘Eric’ reached-out to us to loan his Alphacool Eiswolf GPX Pro cooling block, which we’ve now applied to a GTX 1080 Founders Edition card. The Eiswolf build process isn’t too difficult – certainly easier than the tear-down of the average FE card. The Eiswolf GPX Pro has an on-card pump with designated in/out tubes, each terminating in threaded quick release valves that hook into a semi-open loop system. We later purchased an Alphacool Eisbaer for our radiator and CPU cooler, then connected them all together.

The review of the Eiswolf will be posted tomorrow, followed shortly by a look at EK WB’s Predator XLC. For today, we’re just posting the build log that our Patreon backers have helped produce.

A new series of Kraken liquid coolers from NZXT marks the first time that Asetek has afforded a customer the responsibility of designing custom electronics, which NZXT deploys for RGB LED control and future firmware revisions. The coolers use Gen5 Asetek pumps with custom-built pump blocks, "infinity mirror" pump plates, and NZXT fans that differentiate the X42, X52, and X62 line-up from Corsair's nearby competition. Corsair most heavily competes in the 240mm market -- that'd go up against the X52 -- where the H100iV2 is priced at ~$105 right now, though the H90 also competes with the X42.

Our disassembly of the Kraken X42 liquid cooler showed the device's internals, explained that the high-quality of design and component selection made for a promising set of tests, but didn't dive into the details. This review looks at the temperature performance and noise performance, along with a noise-temperature curve, of the new NZXT Kraken X62, X52, and X42 liquid coolers, particularly matched against the H100iV2. We've got the EK WB Predator XLC 280 as a high-end alternative, alongside the Be Quiet! Dark Rock 3 as a $50 air cooler, just to provide a baseline.

NZXT's new Kraken X42, X52, and X62 liquid coolers were announced today, all using the new Asetek Gen5 pump with substantial custom modifications. The most direct Gen5 competition would be from Corsair, makers of the H115i and H100iV2, each priced to compete with the Kraken X42 ($130) and X52. The Corsair units, however, are using an unmodified Asetek platform from top-to-bottom, aside from a couple of Corsair fans. NZXT's newest endeavor had its components dictated by NZXT, including a custom (and fairly complex) PCB for fan speed, pump speed, and RGB control, planted under a custom pump plate with infinity mirror finish. The unit has gone so far as to demand a double-elbow barb for pose-able tubes, rather than the out-the-top setup of the Asetek stock platform – that's some fastidious design.

As for how we know all of this, it's because we've already disassembled a unit. We decided to dismantle one of our test-complete models to learn about its internals, since we're still waiting for the X52 and X62 models to be review-ready. We've got a few more tests to run.

Before getting to the tear-down, let's run through the specs, price, and availability of NZXT's new Kraken X42, X52, and X62 closed-loop liquid coolers. 

Liquid cooling has become infinitely more accessible with plug-and-play AIO solutions, but those lack some of the efficacy and all of the aesthetics. Open loop liquid cooling is alive and well in the enthusiast market; it's a niche of a niche, and one that's satisfied by few manufacturers. We had a chance to stop over at Thermaltake's offices while making the City of Industry circuit last week, and used some of that time to film a brief tutorial on hard tube bending.

It felt like filming a cooking show, at times. The format was similar, but it worked well for this process. Open loop liquid cooling is done with either soft tubing or hard tubing, the latter of which must be heated (with a heat gun) to make necessary bends within the system. Soft tubing is more easily manipulated and is as “plug and play” as it gets with an open loop, though “plug and play” isn't really desirable with open loops. Once you're this deep in cooling, best to go all the way.

PETG hard tubing is more leak resistant by nature of the mounting. Hard tubes are less likely to slip off of their mounting barbs with age or transport (fluid between the tube and its mounting point can lubricate the tube, causing a slip and slow leakage). The downside, as with the rest of open loop cooling, is entirely the time requirement and cost increase. Granted, compared to the rest of the loop, hard tubing cost can start to feel negligible.

We might soon be building a wet bench for open loop liquid cooling, as we're starting to receive GPUs with water blocks for testing. Today, we've got a brief hard tube bending tutorial with Thermaltake's Thermal Mike to lead us into our future open loop content. Take a look at that below:

“Ye-- ye cain't take pictures h-- here,” a Porky Pig-like voice meekly spoke up from behind the acrylic windshield of a golf cart that'd rolled up behind us, “y-ye cain't be takin' pictures! I'm bein' nice right now!”

Most folks in media production, YouTube or otherwise, have probably run into this. We do regularly. We wanted to shoot an Ask GN episode while in California, and decided to opt for one of the fountains in Fountain Valley as the backdrop. That's not allowed, apparently, because that's just how rare water is in the region – don't look at it the wrong way. It might evaporate. Or something.

But no big deal – we grab the bags and march off wordlessly, as always, because this sort of thing just happens that frequently while on the road.

Regardless, because Andrew was not imprisoned for sneaking a shot of the fountain into our video or taking two pretzel snacks on the plane, Ask GN 29 has now been published to the web. The questions from viewers and readers this week include a focus on “why reviewers re-use GPU benchmark results” (we don't – explained in the video), the scalers in monitors and what “handles stretching” for resolutions, pump lifespan and optimal voltage for AIOs, and theoretical impact from HBM on IGPs.

Implementation of liquid coolers on GPUs makes far more sense than on the standard CPU. We've shown in testing that actual performance can improve as a result of a better cooling solution on a GPU, particularly when replacing weak blower fan or reference cooler configurations. With nVidia cards, Boost 3.0 dictates clock-rate based upon a few parameters, one of which is remedied with more efficient GPU cooling solutions. On the AMD side of things, our RX 480 Hybrid mod garnered some additional overclocking headroom (~50MHz), but primarily reduced noise output.

Clock-rate also stabilizes with better cooling solutions (and that includes well-designed air cooling), which helps sustain more consistent frametimes and tighten frame latency. We call these 1% and 0.1% lows, though that presentation of the data is still looking at frametimes at the 99th and 99.9th percentile.

The EVGA GTX 1080 Hybrid has thus far had the most interesting cooling solution we've torn down on an AIO cooled GPU this generation, but Gigabyte's Xtreme Waterforce card threatens to take that title. In this review, we'll benchmark the Gigabyte GTX 1080 Xtreme Water Force card vs. the EVGA 1080 FTW Hybrid and MSI/Corsair 1080 Sea Hawk. Testing is focused on thermals and noise primarily, with FPS and overclocking thrown into the mix.

A quick thanks to viewer and reader Sean for loaning us this card, since Gigabyte doesn't respond to our sample requests.

Page 1 of 6

  VigLink badge