This is just a quick PSA.

We shot an off-the-cuff video about software misreporting Vega’s frequency, to the extent that a “1980MHz overclock” is possible under the misreported conditions. The entire point of the video was to bring awareness to a bug in either software or drivers – not to point blame at AMD – explicitly to ensure consumers understand that the numbers may be inaccurate. Some reviews even cited overclocks of “1980MHz,” but overlooked the fact that scaling ceases around the threshold where the reporting bugs out.

When interviewing EVGA Extreme OC Engineer “Kingpin,” the term “dailies” came up – as in daily users, or “just gamers,” or generally people who don’t use LN2 to overclock their GPU. The GTX 1080 Ti Kingpin card is not a device built for “dailies,” but rather for extreme overclockers – people who are trying to break world records.

Cards like this – the Lightning would be included – do have a reason to exist. Criticism online sometimes calls such devices “pointless” for delivering the same overall out-of-box experience as nearly any other 1080 Ti, but those criticizing aren’t looking at it from the right perspective. A Kingpin, Lightning, or other XOC card is purchased to eliminate the need to perform hard mods to get a card up to speed. It’s usable out of the box as an XOC tool.

Professional overclocker Toppc recently set another world record for DDR4 SDRAM frequency. Using a set of G.SKILL DDR4 sticks (an unidentified kit from the Trident Z RGB line) bestriding an MSI X299 Gaming Pro Carbon AC motherboard, Toppc was able to achieve a 5.5 GHz DDR4 frequency—approximately a 500 MHz improvement over his record from last year.

Toppc’s new record is verified by HWBot, accompanied by a screenshot of CPU-Z and Toppc’s extreme cooling setup, which involved LN2. Although an exact temperature was not provided, and details on the aforementioned G.SKILL kit are scant, we do know that the modules used Samsung 8GB ICs. Based on the limited information, we can infer or postulate that this is probably a new product from G.SKILL, as they announced new memory kits at Computex.

Gigabyte recently sponsored an extreme overclocking event throughout Computex, where their resident overclockers HiCookie and Sofos teamed with TeamAU’s Dinos22, Youngpro, and SniperOZ. The teams worked to overclock the Intel i7-7740X KBL-X CPU on the new X299 platform.

Gigabyte’s team was able to hit the 7.5GHz mark with the i7-7740X, with the help of LHe (Liquid Helium) – allegedly $20,000 worth. To give some perspective, when we spoke off-camera with Der8auer at the GSkill booth, we learned that LHe costs him about $4.4 per second in his region. With the use of LHe, the team of overclockers were able to drop temperatures to -250° Celsius. Opposed to LN2, LHe has a boiling point of around -269° Celsius, meaning it can take temperatures far lower than LN2.

With the employed LHe, Gigabyte was able to set 4 launch day records in 3DMark03, 3DMark06, and Aquamark. All scores were achieved using the Intel i7-7740X and the Gigabyte X299-SOC Champion motherboard. Memory and GPUs diverge a bit for different benchmarks, as can be seen below.

Following our recent delidding of the Intel i9-7900X, we received a few questions asking for the die size and CPU size of the new 10C/20T Intel CPU. We decided to return to the GSkill booth, where overclocker Der8auer helped us delid the CPU, to take some measurements. The original delidding video is here.

On to the sizes: This was measured with a media gift ruler on a show floor, so it’s accurate enough. Millimeters are millimeters.

MSI’s flagship GTX 1080 Ti Lightning GPU made an appearance at the company’s Computex booth this year, where we were able to get hands-on with the card and speak with PMs about VRM and cooling solutions. The 1080 Ti Lightning is an OC-targeted card, as indicated by its LN2 BIOS switch, and will compete with other current flagships (like the Kingpin that we just covered). The Lightning does not yet have a price, but we know the core details about cooling and power.

Starting with cooling: MSI’s 1080 Ti Lightning uses a finned baseplate (think “pin fins” from ICX) to provide additional surface area for dissipation of VRM/VRAM component heat. This baseplate covers the usual areas of the board, but is accompanied by a blackout copper heatpipe over the MOSFETs & driver IC components for heat sinking of power modules. We’ve seen this design get more spread lately, and have found it to be effective for cooling VRM devices. The heatpipe is cooled by the Lightning’s 3-fan solution, as is the rest of the thick finstack above the custom PCB.

We ran into professional overclocker Der8auer at G.Skill’s Computex booth, who was keen to give us a hands-on delidding demonstration of a new 10C/20T Intel Skylake-X CPU. During the process, we also got our first real hands-on look at the CPU substrate and package – interesting in its own right – and underlying thermal compound choice. The lack of solder could have an explanation in chip longevity, something we’ll talk about a bit later.

This process involves Der8auer’s new delidding kit, an Allen wrench (looked like a 5mm wrench), and some force. Nothing difficult. The process is identical for both KBL-X and SKY-X, with the disclaimer that larger SKY-X CPU dies (like 14-18C chips) could pose some difficulties with extra capacitor density surrounding the CPU die. There’s much greater risk of damaging or destroying the 14C to 18C CPUs given this challenge, and although the 10C CPU was trivial, risk of damage is also present. SMD components sit close to the outer glue of the IHS, which means that delidding could potentially rip one of the SMDs off of the substrate. The SMDs on the sides of the CPU die are for memory channels, with the capacitor and RFID chip in the corner being less critical.

EVGA’s GTX 1080 Ti Kingpin made its first debut to a group of press before Computex 2017, and we were given the privilege of being the first media to tear-down the card. The Kingpin edition 1080 Ti is EVGA’s highest-end video card – price TBD – and is built for extreme overclockers and enthusiasts.

The GTX 1080 Ti Kingpin uses an oversized PCB that’s similar to the FTW3, though with different components, and a two-slot cooler that partners with NTC thermistors on the VRM + VRAM components. This means that, like the FTW3, the cooling solution slaves to independent component temperatures, with a hard target of keeping all ICs under 60C (even when unnecessary or functionally useless, like for the MCUs). The Kingpin model card uses a copper-plated heatsink, six heatpipes, and the usual assortment of protrusions on the baseplate for additional surface area, but also makes accommodations for LN2 overclocking. We’ll start with detailing the air cooler, then get into LN2 and power coverage.

While we crank away at finalizing the review for the GTX 1080 Ti Gaming X, the Ryzen R5 CPUs, and some other products, we decided to run a PCB & VRM quality analysis of MSI’s card. The new GTX 1080 Ti Gaming X is another in a line of overbuilt VRMs, but interesting for a number of reasons (especially given the quality of this round’s reference VRM).

In our analysis of the PCB, we go over VRM design, overclocking potential, and power mods. The power mod section (toward the end of the video) discusses shunt shorting and how to trick the GPU into permitting a higher power throughput than natively allowed.

View Buildzoid’s analysis below:

The first unlocked i3 CPU, upon its pre-release disclosure to GN, sounded like one of Intel’s most interesting moves for the Kaby Lake generation. Expanding overclocking down to a low/mid-tier SKU could eat away at low-end i5 CPUs, if done properly, and might mark a reprisal of the G3258’s brief era of adoration. The G3258 didn’t hold for long, but its overclocking prowess made the CPU an easy $60-$70 bargain pickup with a small window of high-performance gaming; granted, it did have issues in more multi-threaded games. The idea with the G3258 was to purchase the chip with a Z-series platform, then upgrade a year later with something higher-end.

The i3-7350K doesn’t quite lend itself to that same mindset, seeing as it’s ~$180 and leaves little room between neighboring i5 CPUs. This is something that you buy more permanently than those burner Pentium chips. The i3-7350K is also something that should absolutely only be purchased under the pretense of overclocking; this is not something that should be bought “just in case.” Do or do not – if you’re not overclocking, do not bother to consider a purchase. It’s not uncommon for non-overclockers to purchase K-SKU Core i7 CPUs, generally for desire of “having the best,” but the 7350K isn’t good enough on its own to purchase for that same reason. Without overclocking, it’s immediately a waste.

The question is whether overclocking makes the Intel i3-7350K worthwhile, and that’s what we’ll be exploring in this review’s set of benchmarks. We test Blender rendering, gaming FPS, thermals, and synthetics in today’s review.

For comparison, neighboring non-K Intel products would include the Intel i5-7500 (3.4GHz) for $205, the i3-7100 for $120, and Intel i3-7320 (4.1GHz) for $165. These sandwich the 7350K into a brutal price category, but overclocking might save the chip – we’ll find out shortly.

To catch everyone up, we’ve also already reviewed the Intel i7-7700K ($350) and Intel i5-7600K ($240), both of which can be found below:

Page 1 of 7

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge