No reference card has impressed us this generation, insofar as usage by the enthusiast market. Primary complaints have consisted of thermal limitations or excessive heat generation, despite reasonable use cases with SIs and mITX form factor deployments. For our core audience, though, it's made more sense to recommend AIB partner models for superior cooling, pre-overclocks, and (normally) lower prices.

But that's not always the case – sometimes, as with today's review unit, the price climbs. This new child of Corsair and MSI carries on the Hydro GFX and Seahawk branding, respectively, and is posted at ~$750. The card is the construct of a partnership between the two companies, with MSI providing access to the GP104-400 chip and a reference board (FE PCB), and Corsair providing an H55 CLC and SP120L radiator fan. The companies sell their cards separately, but are selling the same product; MSI calls this the “Seahawk GTX 1080 ($750),” and Corsair sells only on its webstore as the “Hydro GFX GTX 1080.” The combination is one we first looked at with the Seahawk 980 Ti vs. the EVGA 980 Ti Hybrid, and we'll be making the EVGA FTW Hybrid vs. Hydro GFX 1080 comparison in the next few days.

For now, we're reviewing the Corsair Hydro GFX GTX 1080 liquid-cooled GPU for thermal performance, endurance throttles, noise, power, FPS, and overclocking potential. We will primarily refer to the card as the Hydro GFX, as Corsair is the company responsible for providing the loaner review sample. Know that it is the same as the Seahawk.

MSI has announced it will be releasing five new GTX 1060 3GB cards. The new Pascal video cards are set for an August release, and they will take on AMD’s 4GB RX 480 in the $200 - $250 market. The MSRP for the GTX 1060 3GB cards will be $200, but some cards may be priced higher to account for pre-overclocks and AIB partner value adds, like improved cooling.

The GTX 1060 3GB cards have 1152 CUDA cores, operating at a base clock of 1506MHz and a boost clock of 1708MHz – the same as the 6GB model, but with 128 fewer cores. MSI, like other AIB partners, will offer factory overclocked cards coupled with brand heatsinks.

The Titan X (Pascal) DIY “Hybrid” project has come to a close, and with that, we've reached our results phase. This project has yielded the most visible swings in clock performance that we've yet seen from a liquid cooling mod, and has revealed significant thermal throttling in the reference nVidia Titan XP design. What's more, this card will not feature the market saturation created by AIB partners with lower end cards, and so more advanced coolers do not seem to be available without going open loop or DIY.

Our liquid-cooled Titan X Pascal Hybrid has increased the card's non-overclocked frequency by an average of nearly 200MHz – again, pre-overclock – because we've removed the thermal throttle point. The card has also improved its clock-rate stability versus temperature and time, provable during our two-hour endurance run.

 

There were rumors of a GTX 1060 3GB card, but the launch of the GTX 1060 featured a single 6GB model. Almost exactly one month later, nVidia has announced its 3GB GTX 1060 with 1152 CUDA Cores, down from 1280, and a halved framebuffer. The card will also run fewer TMUs as a result of disabling 1 SM, for a total of 9 simultaneous multiprocessors versus the 10 SMs on the GTX 1060 6GB. This brings down TMU count from 80 to 72 (with 8x texture map units per SM), making for marginally reduced power coupled with a greatly reduced framebuffer.

(Update: The card is already available on etailers, see here.)

In theory, this will most heavily impact 0.1% low and 1% low frame performance, as we showed in the AMD RX 480 8GB vs. 4GB comparison. Games which rely less upon Post FX and more heavily upon large resolution textures and maps (as in shadow, normal, specular – not as in levels) will most immediately show the difference. Assassin's Creed, Black Ops III (in some use cases), and Mirror's Edge Catalyst are poised to show the greatest differences between the two. NVidia has advertised an approximate 5% performance difference when looking at the GTX 1060 3GB vs. GTX 1060 6GB, but that number will almost certainly be blown out when looking at VRAM stressing titles.

We've just finished testing the result of this build, and the results are equal parts exciting and intriguing – but that will be published following this content. We're still crunching data and making charts for part 3.

In the meantime, the tear-down of our reader's loaner Titan X (Pascal) GPU has resulted in relatively easy assembly with an EVGA Hybrid kit liquid cooler. The mounting points on the Titan XP are identical to a GTX 1080, and components can be used between the two cards almost completely interchangeably. The hole distance on the Titan XP is the same as the GTX 1080, which is the same as the 980 Ti, 1070, and very similar to the GTX 1060 (which has a different base plate).

Here's the new video of the Titan X build, if you missed it:

With thanks to GamersNexus viewer Sam, we were able to procure a loaner Titan X (Pascal) graphics card whilst visiting London. We were there for nVidia's GTX 10 Series laptop unveil anyway, and without being sampled the Titan X, this proved the best chance at getting hands-on.

The Titan X (Pascal) GP102-400 GPU runs warmer than the GTX 1080's GP104-400 chip, as we'll show in benchmarks in Part 3 of this series, but still shows promise as a fairly capable overclocker. We've already managed +175MHz offsets from core with the stock cooler, but want to improve clock-rate stability over time and versus thermals. The easiest way to do that – as we've found with the 1080 Hybrid, 1060 Hybrid, and 480 Hybrid – is to put the card under water cooling (or propylene glycol, anyway).

In this first part of our DIY Titan XP “Hybrid” build log, we'll tear-down the card to its bones and look at the PCB, cooling solution, and potential problem points for the liquid cooling build.

Here's the video, though separate notes and photos are below:

Best Last-Gen Video Card Deals

in Sales
Sunday, 14 August 2016

New video cards are coming out more quickly than we can write reviews here at Gamers Nexus. The launch of the RX 460, RX 470, RX 480, and GTX 1060 have released a flurry of new options for budget to mid-range gamers (and high-end, if you count the 1070s and 1080s). The new cards have brought down prices for older last-gen video cards, especially 900-series nVidia cards and 300-series AMD cards. In this piece, we’ll show you the best bang for your buck when it comes to last-gen video card purchases – and they aren't even second-hand.

Gamers looking to get a card for $100 to $130 have a few options at the price range. At $110, you could either get a GTX 750 Ti ($110) or opt for AMD’s newly released RX 460. The RX 460 makes more sense than a GTX 750 Ti, at this point, but we do generally recommend a bump up to the next class. That would include the GTX 950 for $125 (after a $15 rebate), outperforming the RX 460 card by 25% in some cases. On the AMD side, the R9 380X was briefly available for $150 before the RX 460 launch, but seems to have risen in price.

Recapping some of the most recent hardware news for the past two days, we visit topics centering on liquid cooling for video cards and a side topic discussing Micron's newest 32GB mobile 3D NAND.

For GPUs, ZOTAC has just announced its “ArcticStorm” GTX 1080 card with waterblock, providing full coverage over the VRAM, FETs, and GPU itself. Standard G1/4 threaded fittings include barbs to support 10mm inner diameter tubing, and microfins are spaced at 0.3mm apart. For a more visual understanding of microfins and spacing, check our liquid cooler tear-down. A metal backplate is included with the card.

We don't have a price on Zotac's ArcticStorm just yet, but have reached-out to ask.

We recruited Libor “Buildzoid” Sadilek of Actually Hardcore Overclocking to assist in our latest coverage of AMD's RX 460 GPUs. The full review of the Sapphire RX 460 Nitro is located here, with a tear-down of the card over here. Today, we're focusing on the electrical component quality of the Sapphire RX 460 Nitro VRM, along with PCB quality in general.

The Sapphire RX 460 Nitro uses an overpowered VRM, but the cost of the end product is not necessarily offset by this. We'll see if prices stabilize as stock becomes more prevalent, though. NVidia and AMD have both been selling out of stock in short order with their new architectures.

This coverage is entirely video driven. You can find the video embedded below, but be sure to subscribe to the YouTube channel for future “specials” like this one.

Following the Sapphire RX 460 Nitro 4GB graphics card review that we posted, we decided to send the card through a tear-down, as we did with the RX 470, RX 480, GTX 1060, and GTX 1080 (links go to disassembly articles).

The RX 460 Nitro uses a custom PCB and shroud. This is a step away from the reference coolers provided by AMD for the RX 470 and RX 480 cards. The Nitro is easily dismantled, done by removing a handful of rear-side screws to release the shroud & cooler, then four more screws to release the heatsink.

Let's run through some photos and discussion of the PCB. Here's a video of the process, for more perspective:

Page 1 of 24

  VigLink badge