Patrick Lathan

Patrick Lathan

Samsung recently officially confirmed that they are producing ASICs (Application-Specific Integrated Circuits) intended for cryptocurrency mining, being sold to unnamed clients for ASIC mining machines. These machines are different from GPU miners, and do not meaningfully affect desktop GPU supply.

As the name implies, ASICs are chips designed for a single purpose. There’s nothing unusual about producing ASICs, but mining-specific ones have been the domain of TSMC until now, primarily with client Bitmain. Samsung won’t be doing the mining themselves, just supplying the hardware: TechPowerUp suggests the order was placed by “Chinese clients” which were mentioned in a recent earnings report. Our understanding is that the varieties of cryptocurrency which ASICs can effectively mine are ones that are now beyond the capabilities of home mining operations, like Bitcoin, so they’re used by massive currency farms. SHA-256 algorithms are best mined with ASIC miners.

To everyone’s confusion, a review copy of Dragon Ball FighterZ for Xbox One showed up in our mailbox a few days ago. We’ve worked with Bandai Namco in the past, but never on console games. They must have cast a wide net with review samples--and judging by the SteamCharts stats, it worked.

It’d take some digging through the site archives to confirm, but we might never have covered a real fighting game before. None of us play them, we’ve tapered off doing non-benchmark game reviews, and they generally aren’t demanding enough to be hardware testing candidates (recommended specs for FighterZ include a 2GB GTX 660). For the latter reason, it’s a good thing they sent us the Xbox version. It’s “Xbox One X Enhanced,” but not officially listed as 4K, although that’s hard to tell at a glance: the resolution it outputs on a 4K display is well above 1080p, and the clear, bold lines of the cel-shaded art style make it practically indistinguishable from native 4K even during gameplay. Digital Foundry claims it’s 3264 x 1836 pixels, or 85% of 4K in height/width.

Today, we’re using Dragon Ball FighterZ to test our new console benchmarking tools, and further iterate upon them for -- frankly -- bigger future launches. This will enable us to run console vs. PC testing in greater depth going forward.

It’s been nearly a month since news broke on Meltdown and Spectre, but the tech industry is still swarming like an upturned anthill as patches have been tumultuous, hurting performance, causing reboots, and then getting halted and replaced, while major manufacturers try to downplay the problem. Yes, that sentence was almost entirely about Intel, but they aren’t the only ones affected. We now return to the scene of the crime, looking at the Meltdown and Spectre exploits with the assistance of several research teams behind the discovery of these attacks.

To summarize the summary of our previous article: Meltdown is generally agreed to be more severe, but limited to Intel, while Spectre has to do with a fundamental aspect of CPUs made in the past 20 years. They involve an important technique used by modern CPUs to increase efficiency, called “speculative execution,” which is allows a CPU to preemptively queue-up tasks it speculates will next occur. Sometimes, these cycles are wasted, as the actions never occur as predicted; however, most of the time, speculating on incoming jobs will greatly improve efficiency of the processor by preemptively computing the inbound instructions. That’s not the focus of this article, but this Medium article provides a good intermediate-level explanation of the mechanics, as do the Spectre and Meltdown whitepapers themselves. For now, it’s important to know that although “speculative execution” is a buzzword being tossed around a lot, it isn’t in itself an exploit--the exploits just take advantage of it.

The most comprehensive hub of information on Meltdown and Spectre is the website hosted by Graz University of Technology in Austria, home of one of the research teams that discovered and reported them to Intel. That’s “one of” because there are no fewer than three other teams acknowledged by Graz that independently discovered and reported these vulnerabilities over the past few months. We’ve assembled a rough timeline of events, with the aid of WIRED’s research:

PC versus console is an ancient debate, long discussed by the wisest and most scholarly of YouTube commenters. PCs are described as expensive, bulky, and difficult to assemble or work with, while consoles are called underpowered, underperforming systems that hold game development back for the duration of each generation. The pro-console responses to our first Xbox One X tests usually boiled down to: “it’s still better than a $500 PC.”

It’s a reasonable argument, and it’s the basis on which consoles are sold these days. By popular demand*, then, we’ve built a $500 PC to compare to the Xbox One X (list price: $500) in performance. We tested whether the 4K-capable Xbox One X is “better” than an equivalently priced PC, judging by framerates in two of the Xbox’s first batch of 4K-enabled games, Destiny 2 and Assassin’s Creed: Origins.

Given the recent insanoland surge in RAM and GPU prices, the argument is more poignant than ever. DIY PCs stand to lose marketshare if people can’t afford to build a cheap machine, and so we thought we’d use our new in-house software to benchmark a low-end PC and an Xbox One X.

While researching GPU prices and learning that GDDR5 memory price has increased by $20-$30 on the bill of materials lately, we started looking into the rising system memory prices. RAM pricing has proven somewhat cyclic over the past few years. We’ve reported on memory price increases dating back to 2012, and have done so seemingly every 2 years since that time. This research piece pulls five years of trend data, working in collaboration with PCPartPicker, to investigate why memory prices might be increasing, when we can expect a decrease, and more.

DRAM prices are crazy right now. We’ve driven that point into the ground over the past few years, but pinpointing a “when” and a “why” is a difficult proposition. With the help of PCPartPicker, we’ve identified some general trends that seem almost cyclic, and provide some relief in pointing toward an eventual downturn.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge