Patrick Lathan

Patrick Lathan

Corsair’s SPEC-04 ($50) is a new mid-tower aimed squarely at the budget market. The case shares its price and much of its hardware (and tooling) with the aged SPEC-01, but with the alien, angular appearance of the SPEC-ALPHA, channeling the aesthetics of the once-$80 case into an affordable $50 package.

Borrowing tooling from its predecessors, the SPEC-04 is able to ship with a lower price-point, aided further by a stripped-down set of interior accoutrements. The SPEC-04 is a small case, but capable of supporting ATX form factor components. This makes the unit deployable for ultra-budget machines, theoretically perfectly fitting for G4560 users.

Today’s review will heavily analyze the thermals, acoustics / noise levels, and build quality of the Corsair Spec-04 case. We test for thermal throttling and additional fan installation, wherein some time is spent adding +1x 120mm fan to multiple positions in the case.

Silverstone’s RL06 case is divided into four SKUs: SST-RL06BR and SST-RL06WS, with -W and -PRO versions of both. Our review sample is the SST-RL06WS-PRO ($75), which means it’s white with silver trim (WS) and comes with 3x 120mm white LED fans (PRO). BR is black with red trim, and -W is theoretically exactly the same case without the fancy fans, although there don’t appear to be any available anywhere right now.

The RL06 is a stripped-down case with serious airflow at a budget price. Today, we’re putting it on our bench against the nearby Corsair 270R, Be Quiet Pure Base 600, Fractal Define C, and other options we’ve tested recently. The RL06 is more airflow-focused than noise-focused, giving us something different to analyze than the past few case reviews.

We came away from our revisit of the once-king Sandy Bridge 2600K and 2500K CPUs impressed by the staying power of products that came out in Q1 2011, considering Intel’s unimpressive gains since that time.

At the time of Sandy Bridge’s release, AMD’s flagship CPUs were 45nm K10-based Phenom IIs, designed to compete in price/performance with the 45nm Lynnfield (Nehalem i5) quad cores. Later that year, AMD’s underwhelming Bulldozer architecture would launch and inevitably replace the Phenom line. Given that we’ve already looked at Intel’s 1Q11 offerings, we decided to revisit AMD’s Phenom II CPUs in 2017, including the Phenom II X6 1090T (Black Edition) and Phenom II X6 1055T. These benchmarks look at AMD Phenom II performance in gaming and production workloads for the modern era, including comparisons to the equal-aged Sandy Bridge CPUs, modern Ryzen 5 & 7 CPUs, and modern Intel CPUs.

It’s been a few months since our last PC build--in fact, it was published well before Ryzen was released. For our first post-Ryzen build, we’ve pulled together some of the components we liked best in testing to make an affordable ultrawide gaming machine. As we did in January, we pulled parts out of inventory and actually assembled and tested this PC to back up our recommendations--we’ll try to continue doing this going forward.

This gaming PC build is priced at just over $1000 -- about $1200, depending on rebates -- and is made for UltraWide 3440x1440 gaming. Our goal is to take reasonably affordable parts and show that UltraWide 1440p gaming is feasible, even while retaining high settings, without buying the most expensive GPUs and CPUs on the market. We’re only using parts in this build that we actually have, so that partially dictates cost (yes, you might be able to do some things cheaper -- like the motherboard), but it also means that we’ve had time to build, validate, and use the system in a real environment. In these early days of Ryzen as a new uarch, that’s important. We’ve done the hard work of troubleshooting a functional build. All you’d have to do is assemble it, configure BIOS, and go.

As a note: This build is also readily capable of production workloads. CUDA acceleration on the GTX 1070 will work well for Premiere renders, and the CPU thread-count will assist in CPU acceleration (like for streaming).

AMD today made available a power plan update which should change how the Balanced plan impacts Ryzen performance.

Problems with Windows preset power modes have been one of the biggest annoyances with Ryzen, and AMD has officially recommended the High Performance preset in the past in order to avoid subpar performance in benchmarks. This wasn’t a big deal from a testing point of view since High Performance mode effectively avoids all of these issues, but for everyday use, it was: High Performance mode doesn’t allow CPU frequency to drop when idle, and the additional power consumption can really hurt the long-term value of the system (it’s also just wasteful). Balanced mode does drop frequency, but it’s also been overly aggressive with core parking on Ryzen chips specifically, making it sub-optimal for use. We discussed what this looks like from a user’s point of view in our “Just Research” article, where frequency plots offer visualization for the impact of Performance vs. Balanced mode. The same article contains some FPS benchmarks between the two power modes.

AMD has made two major changes in this update. Quoting their statement:

  1. Maintain residency in CPU p0 or p1 to give Zen full control over clocks and volts.

  2. Disable core parking.

They specifically noted that Intel also fully disables core parking in the Balanced power plan. Our tests have always used High Performance mode for Ryzen platforms (except power tests), and our results will not be affected by this update.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge