Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

Getting this cooler working was a bit of a struggle. It was some parts human error, on our end, and some parts mechanical error. This thing is a $100 cooler from Aliexpress, and it uses both open loop liquid cooling for a few of its pipes while also using traditional air cooling and heatpipes. We had some small (read: significant) leaks during our livestream, and after the stream, we discovered that the screws securing the inlet manifold to the tower were loose, causing significant leakage as the water filled the pipes. After fixing this, we were finally able to fully test this truly unique hybrid water-air cooler.

The cooler is an interesting one. We’re planning a separate tear-down of the cooler to see what’s going on under the coldplate – likely not much – but for now, we’ve done exhaustive thermal testing under various conditions. Some tests were just straight pump/reservoir hookups to the cooler, while others included a 360mm radiator and 3 high-end fans. The W120 has been sitting on shelves for a while, clearly, as it was first shown at Computex 2011, and the box we received had dried thermal paste and yellowing on the product box. We still wanted to test it, as the unique combination of G-1/4” fittings, open loop support through 4 water pipes, and traditional air cooling meant the cooler could perform peculiarly. You’d assume that there’s a reason this isn’t really done, but we still wanted to find out why.

Manufacturing a single case can cost hundreds of thousands of dollars to design and develop, but the machinery used to make those cases costs millions of dollars. In a recent tour of Lian Li’s case manufacturing facility in Taiwan, we got to see first-hand the advanced and largely autonomous hydraulic presses, laser cutters, automatic shaping machines, and other equipment used to make a case. Some of these tools apply hundreds of thousands of pounds of force to case paneling, upwards of 1 million Newtons, and others will use high voltage to spot-weld pieces to aluminum paneling. Today, we’re walking through the start-to-finish process of how a case is made.

The first steps of case manufacturing at the Lian Li facility is to design the product. Once this process is done, CAD files go to Lian Li’s factory across the street to be turned into a case. In a simplified, canonical view of the manufacturing process, the first step is design, then raw materials and preparation of raw materials, followed by either a laser cutter for basic shapes or a press for tooled punch-outs, then washing, grinding, flattening, welding, and anodizing.

After seeing dozens of cases at Computex 2018, we’ve now rounded-up what we think are the best cases from the show, with the most interesting design elements, price points, or innovations. As always, wait until we can review these cases before getting too hyped and pre-ordering, but we wanted to at least point-out the top cases to pay attention to for the next year.

We’re calling this content the “Most Room for Improvement at Computex 2018” content piece. A lot of products this year are still prototypes, and so still have lots of time to improve and change. Many of the manufacturers have asked for feedback from media and will be making changes prior to launch, hopefully, but we wanted to share some of our hopes for improvement with all of you.

Separately, Linus of LinusTechTips joined us for the intro of this video, if that is of interest.

Computex 2018 saw the unveil of pro overclocker Der8auer’s phase-change cooling solution, called the Phase-Shift Cooler, using a similar solution to 3M Novec. Novec coolant has been demonstrated before (and was again at Computex) for its low boiling point and ability to cool a system using “only” a condenser and coolant, but is on the restricted substances list in the EU for containing PFCs. This eliminates 3M Novec from the list of products available for consumer retail, and forced Der8auer and Caseking to find another solution. The pair did find another liquid with a low boiling point, but did not share with GamersNexus the specs of the liquid. Regardless, it’s the same idea.

For Der8auer’s Phase-Shift Cooler, about 40ml of liquid sits in a CPU block, attached via (presently) a large hose to a condenser and tank. Atop a 7920X with Prime95 running, roughly creating about a 140W heat load, the coolant evaporates and drafts up the pipe as a gas. As the gas hits the tank, it encounters the condensers and gets cooled by a pair of copper heatsinks and 90mm fans. Once condensation forms, it slowly drips back down the tube and returns to the block.

Page 1 of 394

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge