Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

Metro: Exodus is the next title to include NVIDIA RTX technology, leveraging Microsoft’s DXR. We already looked at the RTX implementation from a qualitative standpoint (in video), talking about the pros and cons of global illumination via RTX, and now we’re back to benchmark the performance from a quantitative standpoint.

The Metro series has long been used as a benchmarking standard. As always, with a built-in benchmark, one of the most important things to look at is the accuracy of that benchmark as it pertains to the “real” game. Being inconsistent with in-game performance doesn’t necessarily invalidate a benchmark’s usefulness, though, it’s just that the light in which that benchmark is viewed must be kept in mind. Without accuracy to in-game performance, the benchmark tools mostly become synthetic benchmarks: They’re good for relative performance measurements between cards, but not necessarily absolute performance. That’s completely fine, too, as that’s mostly what we look for in reviews. The only (really) important thing is that performance scaling is consistent between cards in both pre-built benchmarks and in-game benchmarks.

Finding something to actually leverage the increased memory bandwidth of Radeon VII is a challenge. Few games will genuinely use more memory than what’s found on an RTX 2080, let alone 16GB on the Radeon VII, and most VRAM capacity utilization reporting is wildly inaccurate as it only reports allocated memory and not necessarily used memory. To best benchmark the potential advantages of Radeon VII, which would primarily be relegated to memory bandwidth, we set up a targeted feature test to look at anti-aliasing and high-resolution benchmarks. Consider this an academic exercise on Radeon VII’s capabilities.

Our AMD Radeon VII review is one of our most in-depth in a while. The new $700 AMD flagship is a repurposed Instinct card, down-costed for gaming and some productivity tasks and positioned to battle the RTX 2080 head-to-head. In today’s benchmarks, we’ll look uniquely at Radeon VII cooler mounting pressure, graphite thermal pad versus paste performance, gaming benchmarks, overclocking, noise, power consumption, Luxmark OpenCL performance, and more.

We already took apart AMD’s Radeon VII card, remarking on its interesting Hitachi HM03 graphite thermal pad and vapor chamber. We also analyzed its VRM and PCB, showing impressive build quality from AMD. These are only part of the story, though – the more important aspect is the silicon, which we’re looking at today. At $700, Radeon VII is positioned against the RTX 2080 and now-discontinued GTX 1080 Ti (the two tested identically). Radeon VII has some interesting use cases in “content creation” (or Adobe Premiere, mostly) where GPU memory becomes a limiting factor. Due to time constraints following significant driver-related setbacks in testing, we will be revisiting the card with a heavier focus on these “content creator” tests. For now, we are focusing primarily on the following:

The AMD Radeon VII embargo for “unboxings” has lifted and, although we don’t participate in the marketing that is a content-filtered “unboxing,” a regular part of our box-opening process involves taking the product apart. For today, restrictions are placed on performance discussion and product review, but we are free to show the product and handle it physically. You’ll have to check back for the review, which should likely coincide with the release date of February 7.

This content is primarily video, as our tear-downs show the experience of taking the product apart (and discoveries as we go), but we’ll recap the main point of interest here. Text continues after the embedded video:

The Intel Xeon W-3175X CPU is a 28-core, fully unlocked CPU capable of overclocking, a rarity among Xeon parts. The CPU’s final price ended up at $3000, with motherboards TBD. As of launch day – that’s today – the CPU and motherboards will be going out to system integrator partners first, with DIY channels to follow at a yet-to-be-determined date. This makes reviewing the 3175X difficult, seeing as we don’t yet know pricing of the rest of the parts in the ecosystem (like the X599 motherboards), and seeing as availability will be scarce for the DIY market. Still, the 3175X is first a production CPU and second an enthusiast CPU, so we set forth with overclocking, Adobe Premiere renders, Blender tests, Photoshop benchmarking, gaming, and power consumption tests.

Page 1 of 406

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge