Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

At CES 2018, Corsair announced its new K63 wireless gaming keyboard and Dark Core gaming mouse, both of which are slated to battle Logitech in the wireless peripheral arena. Corsair is targeting low latency, moderate battery-life configurations in a TKL Cherry MX Red keyboard, with the mouse using a Pixart 3367 modified optical sensor.

When asked for clarification on the latency figures given – always “1ms” – Corsair told GamersNexus that the 1ms number cites the spec for transmission latency on the wireless signal, not click-to-response latency. We should have the latter eventually, but not today. The mouse is built with two variants, at $80 and $90, with the more expensive model branded the “SE,” and capable of wireless Qi charging. On a “Qi spot,” as they call it.

Yes, really.

From the show floor of CES, we’re posting our review of Corsair’s new 6th Generation Asetek coolers, including the H150i Pro, a 360mm closed-loop liquid cooling solution. The H150i Pro launched at $170, accompanied by the H115i Pro, a $140 280mm liquid cooler. Both use the new 6th generation of Asetek cooling, which Corsair debuted at Computex 2017. No other company has yet shown or hinted at Gen6 products, marking this the first for Asetek’s new coolers.

In large part, as you’ll see in testing, the coolers aren’t heavily modified in the cooling department – most the changes are to better accommodate RGB LEDs and Gen4-style side-mount tubing. Corsair also specified a smaller coldplate for the Gen6 H150i and H115i Pro CLCs, marking the first coldplate change by Asetek in years. In terms of the pump assembly, that functions mostly the same as it always has – though we’ll do a tear-down after CES.

As for Corsair’s part, that’s largely comprised of changes requested of Asetek (coldplate size, PCB changes), with the rest of the changes being the inclusion of ML-series fans. The magnetic levitation fans used come in 2x 140 (H115i) and 3x 120 (H150i) variants, and are silence-focused, not outright performance-focused. This shifts review discussion to focus more on acoustic performance and noise-normalized performance. Speaking of, Corsair has included a 0RPM mode for its new CLCs, meaning that sub-45C liquid temperatures can be accompanied by 0RPM fan speeds – silence, in other words. At least, silence aside from the pump, which makes an audible pump whine and chirping noise during high-speed operation. The pump can me slowed down (1100RPM), at which point it does genuinely become inaudible – but not under its higher speed (~2800RPM) conditions. Granted, the use cases for each are clear: Silence or performance – pick one, not both.

GamersNexus secured an early exclusive with the new Gigabyte Gaming 7 motherboard at CES 2018, equipped with what one could confidently assume is an AMD X470 chipset. Given information from AMD on launch timelines, it would also be reasonable to assume that the new motherboards can be expected for roughly April of this year, alongside AMD’s Ryzen CPU refresh. This is all information learned from AMD’s public data. As for the Gigabyte Gaming 7 motherboard, the first thing we noticed is that it has real heatsinks on the VRMs, and that it’s actually running what appears to be a higher-end configuration for what we would assume is the new Ryzen launch.

Starting with the heatsink, Gigabyte has taken pride in listening to media and community concerns about VRM heatsinks, and has now added an actual finstack atop its 10-phase Vcore VRM. To give an idea, we saw significant performance improvement on the EVGA X299 DARK motherboard with just the finned heatsinks, not even using the built-in fans. It’s upwards of 20 degrees Celsius improvement over the fat blocks, in some cases, since the blocks don’t provide any surface area.

This content piece was highly requested by the audience, although there is presently limited point to its findings. Following the confluence of the Meltdown and Spectre exploits last week, Microsoft pushed a Windows security software update that sought to fill some of the security gaps, something which has been speculated as causing a performance dip between 5% and 30%. As of now, today, Intel has not yet released its microcode update, which means that it is largely folly to undertake the benchmarks we’re undertaking in this content piece – that said, there is merit to it, but the task must be looked at from the right perspective.

From the perspective of advancing knowledge and building a baseline for the next round of tests – those which will, unlike today’s, factor-in microcode patches – we must eventually run the tests being run today. This will give us a baseline for performance, and will grant us two critical opportunities: (1) We may benchmark baseline, per-Windows-patch performance, and (2) we can benchmark post-patch performance, pre-microcode. Both will allow us to see the isolated impact from Intel’s firmware update versus Microsoft’s software update. This is important, and alone makes the endeavor worthwhile – particularly because our CPU suite is automated, anyway, so no big time loss, despite CES looming.

Speaking of, we only had time to run one CPU through the suite, and only with a few games, as, again, CES is looming. This is enough for now, though, and should sate some demand and interest.

As we pack before CES, this is just a quick video update in a non-standard format. We decided to put together a loose video that details the practical learnings of delidding -- things we've picked up over the past few months of taking the IHS off processors. During this time, we've learned a few tricks pertaining to resealing, preventing electrical shorts and damage, and applying liquid metal. These are all things that we could have used when learning about delidding, and so we decided to compile it into one content piece. The format is less formal and in our "tear-down" setup, just with a different tone to the content.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge