Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

Revealed to press under embargo at last week’s GTC, the nVidia-hosted GPU Technology Conference, nVidia CEO Jensen Huang showcased the new TITAN W graphics card. The Titan W is nVidia’s first dual-GPU card in many years, and comes after the compute-focused Titan V GPU from 2017.

The nVidia Titan W graphics card hosts two V100 GPUs and 32GB of HBM2 memory, claiming a TDP of 500W and a price of $8,000.

“I’m really just proving to shareholders that I’m healthy,” Huang laughed after his fifth consecutive hour of talking about machine learning. “I could do this all day – and I will,” the CEO said, with a nod to PR, who immediately locked the doors to the room.

At GTC 2018, we learned that SK Hynix’s GDDR6 memory is bound for mass production in 3 months, and will be featured on several upcoming nVidia products. Some of these include autonomous vehicle components, but we also learned that we should expect GDDR6 on most, if not all, of nVidia’s upcoming gaming architecture cards.

Given a mass production timeline of June-July for GDDR6 from SK Hynix, assuming Hynix is a launch-day memory provider, we can expect next-generation GPUs to become available after this timeframe. There still needs to be enough time to mount the memory to the boards, after all. We don’t have a hard date for when the next-generation GPU lineup will ship, but from this information, we can assume it’s at least 3 months away -- possibly more. Basically, what we know is that, assuming Hynix is a launch vendor, new GPUs are nebulously >3 months away.

NVidia today announced what it calls “the world’s largest GPU,” the gold-painted and reflective GV100, undoubtedly a call to its ray-tracing target market. The Quadro GV100 combines 2x V100 GPUs via NVLink2, running 32GB of HBM2 per GPU and 10,240 CUDA cores. NVidia advertises 236 TFLOPS Tensor Cores in addition to the power afforded by the 10,240 CUDA cores.

Additionally, nVidia has upgraded its Tesla V100 products to 32GB, adding to the HBM2 stacks on the interposer. The V100 is nVidia’s accelerator card, primarily meant for scientific and machine learning workloads, and later gave way to the Titan V(olta). The V100 was the first GPU to use nVidia’s Volta architecture, shipping initially at 16GB – just like the Titan V – but with more targeted use cases. NVidia's first big announcement for GTC was to add 16GB VRAM to the V100, further adding a new “NV Switch” (no, not that one) to increase the coupling capabilities of Tesla V100 accelerators. Now, the V100 can be bridged with a 2-billion transistor switch, offering 18 ports to scale-up the GPU count per system.

Analyst Christopher Rolland recently confirmed Bitmain’s completed development of a new ASIC miner for Ethereum (and similar cryptocurrencies), and thusly reduced stock targets for both AMD and NVIDIA. According to Rolland, Bitmain’s ASIC may eat into GPU demand by cryptomining companies, as the ASIC will outperform GPUs in efficiency for the hashing power.

Rolland noted that this may, obviously, reduce demand for GPUs for mining applications, highlighting that an approximate 20% of AMD and 10% of NVIDIA sales revenue has recently come from mining partners.

Multi-core enhancement is an important topic that we’ve discussed before – right after the launch of the 8700K, most recently. It’ll become even more important over the next few weeks, and that’s for a few reasons: For one, Intel is launching its new B and H chipsets soon, and that’ll require some performance testing. For two, AMD is launching its Ryzen 2000 series chips on April 19th, and those will include XFR2. Some X470 motherboards, just like some X370 motherboards, have MCE equivalent options. For Intel and AMD both, enabling MCE means running outside of power specification, and therefore thermal spec of low-end coolers, and also running higher clocks than the stock configuration. The question is if any motherboard vendors enable MCE by default, or silently, because that’s where results can become muddy for buyers.

As noted, this topic is most immediately relevant for impending B & H series chipset testing – if recent leaks are to be believed, anyway. This is also relevant for upcoming Ryzen 2 CPUs, like the 2700X and kin, for their inclusion of XFR2 and similar boosting features. In today’s content, we’re revisiting MCE and Core Performance Boost on AMD CPUs, demonstrating the differences between them (and an issue with BIOS revision F2 on the Ultra Gaming).

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge