Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

Asetek has a stranglehold on most of the closed-loop liquid cooler market for PC hardware, easily holding majority placement in all CLCs sold in the US. CoolIT has long been a contender of Asetek’s, with the two having battled legally over Asetek’s patents on pump-in-block design, and has also been one of Corsair’s two liquid cooling partners. Both Asetek and CoolIT make the Corsair liquid coolers, though the latter fell out of popularity for a number of years. Finally, with the Platinum line, Corsair is working with CoolIT in a mainstream product. The H115i Platinum uses a new pump and block design, and that’s something we’ll show off thoroughly in our upcoming liquid cooler internals comparison video. For today, we’re focusing on reviewing the $160 H115i Platinum for thermals, acoustics, and overall value at the price point.

Asetek has previously received settlements in legal disputes against CoolIT, the other supplier of Corsair’s closed-loop liquid coolers, and has also won legal battles against Cooler Master for its Seidon series. Asetek, it seems, has a patent on the pump-in-block design approach, and has had judges rule in its favor. This has led to an exodus of non-Asetek coolers in the US market, with companies like Swiftech and Be Quiet! pulling their similarly-made (but non-Asetek) coolers out of the US market. We’re left with a few braver souls, like those using Apaltek-made designs, and some companies that have worked around the patents. DeepCool would be an example, which uses a three-chamber, very complicated approach to its pump manufacturing.

This is the article version of our recent tour of a cable factory in Dongguan, China. The factory is SanDian, used by Cooler Master (and other companies you know) to manufacture front panel connectors, USB cables, Type-C cables, and more. This script was written for the video that's embedded below, but we have also pulled screenshots to make a written version. Note that references to "on screen" will be referring to the video portion.

USB 3.1 Type-C front panel cables are between 4x and 10x more expensive than USB2.0 front panel cables, which explains why Type-C is still somewhat rare in PC cases. For USB 3.1 Gen2 Type-C connectors with fully validated speeds, the cost is about 7x as expensive as the original USB3.0 cables. That cost is all because of how the cables are made: Raw materials have an expense, but there’s also tremendous time expense to manufacture and assemble USB 3.1 Type-C cables. Today’s tour of SanDian, a cable factory that partners with Cooler Master, shows how cables are made. This includes USB 3.1 Type-C, USB 2.0, and front panel connectors. Note that USB 3.1 is being rebranded to USB 3.2 going forward, but it’s the same process.

We’re still in China for our factory and lab tours, but we managed to coordinate with home base to get enough testing on the GTX 1660 done that a review became possible. Patrick ran the tests this time, then we just put the charts and script together from Dongguan, China.

This is a partner launch, so no NVIDIA direct sampling was done and, to our knowledge, no Founders Edition board will exist. Reference PCBs will exist, as always, but partners have control over most of the cooler design for this launch.

Our review will look at the EVGA GTX 1660 dual-fan model, which has an MSRP of $250 and lands $30 cheaper than the baseline GTX 1660 Ti pricing. The cheapest GTX 1660s will sell for about $220, but our $250 unit today has a higher power target allowance for overclocking and a better cooler. The higher power target is the most interesting, as overclocking performance can stretch upwards toward a GTX 1660 Ti at the $280 price-point.

We’ll get straight to the review today. Our focus will be on games, with some additional thermal and power tests toward the end. Again, as a reminder, we’re doing this remotely, so we don’t have as many non-gaming charts as normally, but we still have a complete review.

Our initial AMD Radeon VII liquid cooling mod was modified after the coverage went live. We ended up switching to a Thermaltake Floe 360 radiator (with different fans) due to uneven contact and manufacturing defects in the Alphacool GPX coldplate. Going with the Asetek cooler worked much better, dropping our thermals significantly and allowing increased overclocking and stock boosting headroom. The new drivers (19.2.3) also fixed most of the overclocking defects we originally found, making it possible to actually progress with this mod.

As an important foreword, note that overclocking with AMD’s drivers must be validated with performance at every step of the way. Configured frequencies are not the same as actual frequencies, so you might type “2030MHz” for core and get, for instance, 1950-2000MHz out. For this reason, and because frequency regularly misreports (e.g. “16000MHz”), it is critical that any overclock be validated with performance. Without validation, some “overclocks” can actually be bringing performance below stock while appearing to be boosted in frequency. This is very important for overclocking Radeon VII properly.

We recently revisited the AMD R9 290X from October of 2013, and now it’s time to look back at the GTX 780 Ti from November of 2013. The 780 Ti shipped for $700 MSRP and landed as NVIDIA’s flagship against AMD’s freshly-launched flagship. It was a different era: Memory capacity was limited to 3GB on the 780 Ti, memory frequency was a blazing 7Gbps, and core clock was 875MHz stock or 928MHz boost, using the old Boost 2.0 algorithm that kept a fixed clock in gaming. Overclocking was also more extensible, giving us a bigger upward punch than modern NVIDIA overclocking might permit. Our overclocks on the 780 Ti reference (with fan set to 93%) allowed it to exceed expected performance of the average partner model board, so we have a fairly full range of performance on the 780 Ti.

NVIDIA’s architecture has undergone significant changes since Kepler and the 780 Ti, one of which has been a change in CUDA core efficiency. When NVIDIA moved from Kepler to Maxwell, there was nearly a 40% efficiency gain when CUDA cores are processing input. A 1:1 Maxwell versus Kepler comparison, were such a thing possible, would position Maxwell as superior in efficiency and performance-per-watt, if not just outright performance. It is no surprise then that the 780 Ti’s 2880 CUDA cores, although high even by today’s standards (an RTX 2060 has 1920, but outperforms the 780 Ti), will underperform when compared to modern architectures. This is amplified by significant memory changes, capacity being the most notable, where the GTX 780 Ti’s standard configuration was limited to 3GB and ~7Gbps GDDR5.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge