Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

The Windows 10 Fall Creators Update (FCU) has reportedly provided performance uplift under specific usage scenarios, most of which center around GPU-bound scenarios with Vega 56 or similar GPUs. We know with relative certainty that FCU has improved performance stability and frametime consistency with adaptive synchronization technologies – Gsync and FreeSync, mostly – and that there may be general GPU-bound performance uplift. Some of this could come down to driver hooks and implementation in Windows, some of it could be GPU or arch-specific. What we haven’t seen much of is CPU-bound tests, attempting to isolate the CPU as the DUT for benchmarking.

These tests look at AMD Ryzen R7 1700 (stock) performance in Windows 10 Creator’s Update (build 1703, ending in 608) versus Windows 10 Fall Creators Update. Our testing can only speak for our testing, as always, and we cannot reasonably draw conclusions across the hardware stack with these benchmarks. The tests are representative of the R7 1700 in CPU-bound scenarios, created by using a GTX 1080 Ti FTW3. Because this is a 1080 Ti FTW3, we have two additional considerations for possible performance uplift (neither of which will be represented herein):

  • - As an nVidia GPU, it is possible that driver/OS behavior will be different than with an AMD GPU
  • - As a 1080 Ti FTW3, it is possible and likely that GPU-bound performance – which we aren’t testing – would exhibit uplift where this testing does not

Our results are not conclusive of the entirety of FCU, and cannot be used to draw wide-reaching conclusions about multiple hardware configurations. Our objective is to start pinpointing performance uplift, and from what combination of components that uplift can be derived. Most reports we have seen have spotted uplift with 1070 or Vega 56 GPUs, which would indicate GPU-bound performance increases (particularly because said reports show bigger gains at higher resolutions). We also cannot yet speak to performance change on Intel CPUs.

Our newest video leverages years of data to make a point about the case industry: Thermal testing isn't just to find a potential item of nitpicking or discussion -- it has actual ramifications in frequency response, power consumption/leakage, and even gaming performance. The current trend of case design has frighteningly spiraled into design trends that are actively worsening performance of systems. This is a regular cycle, to some extent, where the industry experiments with new design elements and trends -- like tempered glass and RGB lights -- and then culls the worst of the implementations. It's time for the industry to make its scheduled, pendulous swing back toward performance, though, and better accommodate thermals that prevent frequency decay on modern GPUs (which are sensitive to temperature swings).

This is a video-only format, for today. Although the content starts with a joke, the video makes use of charts from the past year or two of case testing that we've done, highlighting the most egregious instances of a case impacting performance of the entire system. We hope that the case manufacturers consider thermals with greater importance moving forward. The video makes the point, but also highlights that resolving poor case design with faster fans will negate any "silent" advantage that a case claims to offer. Find all of that below:

This testing kicked-off because we questioned the validity of some cooler testing results that we saw online. We previously tested two mostly identical Noctua air coolers against one another on Threadripper – one cooler had a TR4-sized plate, the other had an AM-sized plate – and saw differences upwards of 10 degrees Celsius. That said, until now, we hadn’t tested those Threadripper-specific CPU coolers versus liquid coolers, specifically including CLCs/AIOs with large coldplates.

The Enermax Liqtech 240 TR4 closed-loop liquid cooler arrived recently, marking the arrival of our first large coldplate liquid cooler for Threadripper. The Enermax Liqtech 240 TR4 unit will make for a more suitable air vs. liquid comparison versus the Noctua NH-U14S TR4 unit and, although liquid is objectively better at moving heat around, there’s still a major argument on the front of fans and noise. Our testing includes the usual flat-out performance test and 40dBA noise-normalized benchmarking, which matches the NH-U14S, NH-U12S, NZXT Kraken X62 (small coldplate), and Enermax Liqtech 240 at 40dBA for each.

This test will benchmark the Noctua NH-U14S TR4-SP3 and NH-U12S TR4-SP3 air coolers versus the Enermax Liqtech 240 TR4 & NZXT Kraken X62.

The units tested for today include:

There aren’t many ways for cooling manufacturers to differentiate atop of a supplier’s product, like the Asetek Gen5 pumps, but you’d be surprised at how much goes into them behind the scenes. NZXT was the first manufacturer permitted to build a fully custom and complex PCB for its RGB-illuminated Kraken coolers, followed-up in short order by EVGA, who dropped the price significantly for the same-size radiators. We’re reviewing the new EVGA CLC 240 today, following-up our previous (positive) CLC 280 and (negative) CLC 120 reviews.

Although they’re all ultimately Asetek products, the EVGA CLC series has thus far competed well with the NZXT Kraken and Corsair H-series coolers. EVGA aimed to strike a balance between the higher-cost features of the Kraken coolers (like manufacturer-customized lighting) and the more function-focused Corsair H-series coolers. The effort yielded ~$130 280mm closed-loop liquid coolers, coming in below the $150-$160 Kraken X52/X62 units and around the H115i (presently $140).

We generally liked the price:performance positioning of the CLC 280 unit, but found the CLC 120 nearly impossible to justify. The 120 wasn’t a far step from good 240mm coolers, like the H100i V2, but EVGA only recently began shipping CLC 240 units.

The Intel i5-8400 review got delayed from initial publication when we figured it’d be worth adding 2666MHz gaming tests. 3200MHz is our standard DDR4 memory speed, providing a solid baseline across Intel and AMD CPUs, but makes less sense for lower-end CPUs with questionable memory speed support. “Questionable” is used here because, as of now, we are not sure whether B/H boards will support only the native memory speed of 2666MHz or higher multipliers. Some board vendors have suggested a possibility of unlocked memory multipliers of 32/36x, but haven’t confirmed, while other sources have suggested a maximum speed of 2666MHz. Because we cannot reasonably confirm either, we decided to just test both, then let the chips fall where they may in 1Q18. That’s the launch period for the B/H boards, as we understand it, and means that the i5-8400 will make much more sense in 1Q18 than now.

As it stands now, the i5-8400 launch seems confused: The only pairing options are Z370 motherboards, which – although cheap ones exist – just don’t make a whole lot of sense for a locked CPU. It’s extra money spent where there need not be extra spend, leaving for a CPU ecosystem that becomes muddied and mismatched. That doesn’t mean the CPU is bad, of course, but it does mean that real-world motherboard pairings of the CPU will likely be far more reasonably priced in a few months.

As has always been the case, including in the i7-8700K review, we are testing with MCE disabled. Our follow-up MCE coverage was not because we had originally tested with it enabled, but because we wanted to demonstrate the performance differences. Anyone capable of reading that piece in its entirety should be aware of that, as the two boards were averaged, though clearly literacy is not always the case – so we’re reiterating it here. MCE off. Plain and simple, as it always has been. We are still using the Ultra Gaming Z370 board.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge