Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

Computex 2018 saw the unveil of pro overclocker Der8auer’s phase-change cooling solution, called the Phase-Shift Cooler, using a similar solution to 3M Novec. Novec coolant has been demonstrated before (and was again at Computex) for its low boiling point and ability to cool a system using “only” a condenser and coolant, but is on the restricted substances list in the EU for containing PFCs. This eliminates 3M Novec from the list of products available for consumer retail, and forced Der8auer and Caseking to find another solution. The pair did find another liquid with a low boiling point, but did not share with GamersNexus the specs of the liquid. Regardless, it’s the same idea.

For Der8auer’s Phase-Shift Cooler, about 40ml of liquid sits in a CPU block, attached via (presently) a large hose to a condenser and tank. Atop a 7920X with Prime95 running, roughly creating about a 140W heat load, the coolant evaporates and drafts up the pipe as a gas. As the gas hits the tank, it encounters the condensers and gets cooled by a pair of copper heatsinks and 90mm fans. Once condensation forms, it slowly drips back down the tube and returns to the block.

At EVGA’s headquarters in New Taipei City, Taiwan, GamersNexus received a hands-on overview of the company’s new semi-closed loop liquid nitrogen cooling setup. The setup was created by K|NGP|N and TiN, both of whom work in the Taiwan office, to increase overclocking efficiency and reduce LN2 usage to only necessary quantities. Typically, extreme overclocking involves manual pouring of liquid nitrogen (LN2) from a thermos, which the overclocker can either manually refill from the LN2 tanks or can refill from the exhaust. With this new system, K|NGP|N is able to circulate LN2 based upon software input of desired temperatures, with used LN2 getting pushed through a series of flexible steel tubing and out of an exit manifold. The result yields somewhat reusable LN2 and eliminates the hands-on thermos pouring element of XOCing, allowing overclockers to focus on the result and tuning. Theoretically, you could run off of large LN2 tanks (~180L) at conservative temperatures for weeks on end, then swap tanks and use the collected “runoff.”

Prior to the Computex rush, we stopped by Lian Li’s case manufacturing facility in Taiwan, about 30 minutes outside of Taipei. A near-future content piece will show our tour of the case factory (and detail how cases are made), but for today, we’re talking about the products for Computex. Other than pushing RGB to the next level – namely by attaching it to cables – Lian Li also provided us an opportunity to look at an updated O11 Air and Lancool One.

We first saw the Lian Li O11 Air at CES 2018, then reviewed the O11 Dynamic after that, and we’re now approaching launch for the Air variant. The Lian Li O11 Air has gone through spec finalization, with a target of $130 for a 3-fan model, or $150 for a 6-fan model (which is highly competitive, we think). The O11 Dynamic was more focused on water cooling, but the O11 Air goes for large, plastic paneling with grills cut throughout, with otherwise identical tooling to the O11 Dynamic. We think this enclosure is one of the most interesting for the latter half of this year. It’s presently due for “before August, probably,” with a possibility of a July launch.

With B350, B360, Z370, Z390, X370, and Z490, we think it’s time to revisit an old topic answering what a chipset is. This is primarily to establish a point of why we need clarity on what each of these provides – there are a lot of chipsets with similar names, different socket types, and similar features. We’re here to define a chipset today in TLDR fashion, with a later piece to explain the actual chipset differences.

As for what a chipset actually is, this calls back to a GN article from 2012 – though we can do a better job now. The modern chipset is a glorified I/O controller, and can be thought of as the spinal cord of the computer, while the CPU is the disembodied brain. Intel calls its chipset a PCH, or Platform Controller Hub, while AMD just goes with the generic and appropriate term “chipset.” The chipset is the center of I/O for the rest of the motherboard, assigning I/O lanes to devices like SATA, gigabit ethernet, and USB ports.

Cooler Master’s H500M is the 18th addition to our “Cases Named H500” chart. The H500M was shown at CES 2018, and follows-up the initial H500P, the H500P Mesh, and the unrelated H500 and H500i cases from NZXT. This is Cooler Master’s high-end solution, shipping at $200 and including user-swappable glass or mesh front panels, with the mesh panel pre-installed in a default configuration. Today, we’re reviewing the Cooler Master H500M enclosure.

Cooler Master’s H500M officially launches for product availability to consumers in the second week of June, just after Computex ends, and carries an MSRP of $200. For clarity, this is a different product than the H500P Mesh that we previously reviewed, although it does ship with a mesh front by default. The H500M also includes a swappable glass front, and otherwise primarily differentiates itself with additional gloss and ARGB support and controllers.

From the ARGB side, software is still to come, and immediate compatibility includes ASUS motherboards. Cooler Master is working with other vendors on further integration. For our purposes today, we’re more focused on overall build quality and thermal performance; besides, we’ve got Computex and flights to Asia breathing down our necks, so we’ll stick with what we’re good at.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge