
Steve Burke
Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"
First world problems, Steve. First world problems.
MSI RX 5700 XT Evoke OC Review: Thermals & Noise vs. Sapphire Pulse
Today’s review looks extensively at the thermals and noise of MSI’s RX 5700 XT Evoke OC card. It’s named “OC” because it has a higher stock clock than average – and higher than some other partner models, too – although the actual overclocking performance for all these cards is limited primarily by silicon quality and memory controller quality. We’ll be most heavily comparing the 5700 XT Evoke to the Sapphire 5700 XT Pulse, which performed excellently and got our recommendation in the review. The Evoke OC should cost around $430, although price isn’t final at time of writing, and that’d put it about $10-$20 ahead of Sapphire’s pricing, or $30 over AMD’s reference card. We’ll go deep with thermal and noise analysis today, alongside some gaming analysis, to see if MSI’s Evoke OC is worth the extra money.
Gaming performance is of minimal interest in this type of review. We’ve already established the 5700 XT’s performance in our initial review (and it didn’t change much in our Sapphire Pulse 5700 XT review), and so the point of interest is thermals and acoustic. Gaming performance hardly changes past what the base silicon can do, and overclocking performance is more luck-of-the-draw than PCB influence, and so we’ll only present a few gaming charts here to establish the average delta between the Evoke and Pulse or Reference models. The MSI RX 5700 XT Evoke OC should be available here whenever it’s actually listed, but partners have been slow to post cards on retailers.
We know that Sapphire’s Pulse is supposed to be $410, although current listings have it on pre-order at $420. We also know that the MSI card should be around $430, but they haven’t finalized that pricing. We’ll review based off of the information we (think) we have.
MSI’s really trying to make black-and-gold a thing for components this year. The company used to be a frontrunner for blue-and-black, then the black-and-red era of Z97 onward, and then the black-and-RGB era, and has now started making black-and-gold everything. That trend began with motherboards, like the Ace, but is continuing to video cards. Aside from that, the rest of this will come down to cooler quality. We’ll do a separate tear-down video on our YouTube channel, but let’s dive into thermal data.
EVGA CLC 360 Liquid Cooler Review: Noise-Normalized Thermals & More
In a world of tempered glass, LEDs, and gimmicks, it’s pretty rare that we come across a fully spartan product that focuses on performance. EVGA has filled that market segment with its DARK series motherboards, named at least partially for their lack of LEDs, and its coolers have traditionally been more price/performance focused than looks-oriented. The CLC series does have a couple RGB LEDs, but only enough to tick the marketing boxes. For the rest, the coolers are aimed at hitting a price/performance mix for the best value. Today, we’re reviewing EVGA’s new CLC 360 liquid cooler to see if it hits the mark.
EVGA’s CLC 360 should be priced about $150 on average, which puts it close to competition like the NZXT Kraken X62, Corsair H150i Pro, and some Deepcool Castle models. EVGA’s CLC 360 uses an Asetek pump at its core and is Asetek-supplied, with the usual customizations on top. As typical, these coolers are primarily differentiated by price, fan choice, and maybe warranty, with some further deviation from the supply by way of LEDs. EVGA has gone relatively spartan with LEDs and looks, instead prioritizing the focus on price and performance balance. With an Asetek Gen5 pump, we’re staying on the plastic three-pronged impeller rather than the newer metal impellers, but performance is overall unchanged between Gen5 and Gen6 – the differences are mostly in focus on reduction of permeation in the tubes.
Sapphire RX 5700 XT Pulse Review: Thermals, Noise, & Overclocking
Sapphire’s RX 5700 XT Pulse is the first of the non-reference 5700 XT cards we’ll be looking at. Following the RX 5700 XT Reference card review, where our primary complaints revolved around its design being excessively hot and loud, the 5700 XT Pulse bears promise to rectify those issues. Our review will focus almost entirely on thermals and noise, as the gaming performance is largely unchanged. Even in spite of that, though, reducing operating noise levels is a massive quality of life improvement from the reference design, and that’s more exciting than the gaming performance.
Sapphire’s RX 5700 XT Pulse should cost about $10 more than MSRP for the reference 5700 XT, which would put it at around $410 USD at launch. With that price, the reference card will have never made sense to buy, but that’s basically what we said in our launch review.
We’ll talk more about the components and build quality in our upcoming tear-down video of the card, but let’s just get straight into noise and thermals for today’s review.
Coolers & Cases Really Matter for Ryzen 3000 CPUs | Thermal Scaling & Frequency
In some ways, AMD has become NVIDIA, and it’s not necessarily a bad thing. The way new Ryzen CPUs scale is behaviorally similar to the way GPU Boost 4.0 scales on GPUs, where simply lowering the silicon operating temperature will directly affect performance and clock speeds. Under complete, full stock settings, a CPU running colder will actually boost higher now; alternatively, if you’re a glass half-empty type, you could view it such that a CPU running hotter will thermally throttle. Either way, frequency is contingent upon thermals, and that’s important for users who want to maximize performance or pick the right case and CPU cooling combination. If you’re new to the space, the way it has traditionally worked is that CPUs will perform at one spec, with one set of frequencies, until hitting TjMax, or maximum Junction temperature. Ryzen 3000 is significantly different from past CPUs in this regard. Some excursions from this behavior do exist, but are a different behavior and are well-known. One such example would include Turbo Boost durations, which are explicitly set by the motherboard to limit the duration for which an Intel CPU can reach its all-core Turbo. This is a different matter entirely from frequency/cold scale.
An Intel CPU is probably the easiest example to use for pre-Ryzen 3000 behavior. With Intel, there are only two real parameters to consider: The Turbo boost duration limit, which we have a separate content piece on (linked above), and the power limit. If operating within spec, outside of the turbo duration limit of roughly 90-120 seconds, the CPU will stick to one all-core clock speed for the entirety of its workload. You could be running at 90 degrees or 40 degrees, it’ll be the same frequency. Once you hit TjMax, let’s say it’s 95 or 100 degrees Celsius, there’s either a multiplier throttle or a thermal shutdown, the choice between which will hinge upon how the motherboard is configured to respond to TjMax.
GPU Silicon Quality & OC Lottery Test: Differences of Each Video Card's Frequency
Thursday, 04 July 2019Silicon quality and the so-called silicon lottery are often discussed in the industry, but it’s rare for anyone to have enough sample size to actually demonstrate what those phrases mean in practice. We asked Gigabyte to loan us as many of a single model of video card as they could so that we could demonstrate the frequency variance card-to-card at stock, the variations in overclocking headroom, and actual gaming performance differences from one card to the next. This helps to more definitively strike at the question of how much silicon quality can impact a GPU’s performance, particularly when stock, and also looks at memory overclocking and range of FPS in gaming benchmarks with a highly controlled bench and a ton of test passes per device. Finally, we can see the theory of how much one reviewer’s GPU might vary from another’s when running initial review testing.
We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.