Steve Burke

Steve Burke

Steve started GamersNexus back when it was just a cool name, and now it's grown into an expansive website with an overwhelming amount of features. He recalls his first difficult decision with GN's direction: "I didn't know whether or not I wanted 'Gamers' to have a possessive apostrophe -- I mean, grammatically it should, but I didn't like it in the name. It was ugly. I also had people who were typing apostrophes into the address bar - sigh. It made sense to just leave it as 'Gamers.'"

First world problems, Steve. First world problems.

The Intel i9-9980XE is a revamped i9-7980XE with solder and higher out-of-box clocks. It’s also got much higher out-of-the-box thermals as compared to a delidded 7980XE, as you’ll see in our testing, and is disappointingly limited in its overclocking headroom when using practical cooling solutions. The 9980XE should effectively be a higher clocked 7980XE with a better stock cooling interface and could be a good candidate for future streams where we RIP YouTube personalities. That is, it would be with chilled water on top of it, whereas the 7980XE has more thermal headroom out of the delid tool. Regardless, we have full benchmarks of this new CPU, including perspectives from both the enthusiast overclocker’s viewpoint and the professional user’s viewpoint. Testing includes overclocking, thermals, Photoshop, Premiere, Blender, gaming, power, and more.

Differences between the 7980XE and 9980XE are relatively minimal when compared to launches with new architectures. The 9980XE functionally is a 7980XE, it’s just soldered and faster – a pre-overclock, more or less. We immediately ran into overclocking limitations on the X299 DARK and Gigabyte Gaming 9 motherboards alike, the former of which has been used by our team to claim (fleeting) TimeSpy world records. These limitations stemmed from a lack of thermal headroom, something our delidded 7980XE doesn’t face to the same degree.

The X299 DARK was used for overclocking tests and the Gigabyte Gaming 9 was used for 'stock' tests, although its MCE toggle apparently does nothing. We used the latest BIOS for each motherboard. Additional test methodology information is in our 9900K review.

Although the year is winding down, hardware announcements are still heavy through the mid-point in November: NVIDIA pushed a major driver update and has done well to address BSOD issues, the company has added new suppliers to its memory list (a good thing), and RTX should start getting support once Windows updates roll-out. On the flip-side, AMD is pushing 7nm CPU and GPU discussion as high-end serve parts hit the market.

Show notes below the embedded video.

Intel’s TDP has long been questioned, but this particular generation put the 95W TDP under fire as users noticed media outlets measuring power consumption at well over 100W on most boards. It isn’t uncommon to see the 9900K at 150W or more in some AVX workloads, like Blender, thus far-and-away exceeding the 95W number. Aside from TDP being an imperfect specification for power, there’s also a lot that isn’t understood about it – including by motherboard manufacturers, apparently. All manufacturers are exceeding Intel guidance for the Turbo boosting duration in some way, which is causing the uncharacteristically high power consumption that produces unfairly advantaged performance results. The other end of this is that the 9900K looks much hotter in some tests.

EVGA’s RTX 2070 XC Ultra gave us an opportunity to compare the differences between NVIDIA’s varied RTX 2070 SKUs, including a low-end TU106-400 and a higher-end TU106-400A. The difference between these, we’ve learned, is one of pre-selection for ability to attain higher clocks. The XC Ultra runs significantly higher under Boost behavior than the 2070 Black does, which means that there’s now more to consider in the $70 price gap between the cards than just the cooler. This appears to be one of the tools available to board partners so that they can reach the $500 MSRP floor, but there is a performance cost as a result. With Pascal, the performance cost effectively boiled-down to one predicated on thermal and power headroom, but not necessarily chip quality. Turing is different, and chip quality is now a potential limiter.

In this review of the EVGA RTX 2070 XC Ultra, we’ll also be discussing performance variability between the two 2070 GPU SKUs. These theories should extrapolate out to other NVIDIA cards with these sub-GPU options. Note that we are just going to focus on the 2070s today. If you want to see how we compare the 2070’s value versus Vega or Pascal, check our 2070 review and Vega 56 power mod content pieces.

The real discussion is going to be in overclocking and thermals, as gaming performance typically isn’t too varied intra-GPU. That said, the GPU changes between these two (technically), so that’ll make for an interesting data point.

We previously deep-dived on MCE (Multi-Core Enhancement) practices with the 8700K, revealing the performance variance that can occur when motherboard makers “cheat” results by boosting CPUs out of spec. MCE has become less of a problem with Z390 – namely because it is now disabled by default on all boards we’ve tested – but boosted BCLKs are the new issue.

If you think Cinebench is a reliable benchmark, we’ve got a histogram of all of our test results for the Intel i9-9900K at presumably stock settings:

1 z390 motherboard differences cinebench histogram

(Yes, the scale starts at non-0 -- given a range of results of 1976 to 2300, we had to zoom-in on the axis for a better histogram view)

The scale is shrunken and non-0 as the results are so tightly clustered, but you can still see that we’re ranging from 1970 cb marks to 2300 cb marks, which is a massive range. That’s the difference between a heavily overclocked R7 2700 and an overclocked 7900X, except this is all on a single CPU. The only difference is that we used 5 different motherboards for these tests, along with a mix of auto, XMP, and MCE settings. The discussion today focuses on when it is considered “cheating” to modify CPU settings via BIOS without the user’s awareness of those changes. The most common change is to the base clock, where BIOS might report a value of 100.00, but actually produce a value of 100.8 or 100.9 on the CPU. This functionally pre-overclocks it, but does so in a way that is hard for most users to ever notice.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge