Hardware Guides

Our latest GN Special Report is looking at sales data to determine the popularity of both AMD and Intel CPUs amongst our readers, with dive-down data on average selling price, popularity by series (R5, R7, R9, or i7, i9, and so on), and Intel vs. AMD monthly sales volume. We ran a similar report in April of this year, but with Ryzen 3000 behind us, we now have a lot more data to look at. We’ll be comparing 3 full years of affiliate purchases through retail partners to analyze product popularity among the GamersNexus readers and viewers.

This year’s busy launch cadence has meant nearly non-stop CPU and GPU reviews for the past 6 months, but that also gives us a lot of renewed data to work with for market analysis. Intel’s supply troubles have been nearly a weekly news item for us throughout this year, with a few months of reprieve that soon lapsed. With Intel’s ongoing supply shortages and 10nm delays, and with its only launch being refreshes of existing parts, the company was barely present in the enthusiast segment for 2019. Even still, it’s dominating in pre-built computer sales, and ultimately, DIY enthusiast is an incredibly small portion of Intel’s total marketshare and volume. AMD, meanwhile, has had back-to-back launches in rapid succession, which have managed to dominate media coverage for the better part of this year.

We return again to our annual Awards Show series, where we recap a year’s worth of content to distill-down our opinions on the best-of-the-best hardware that we’ve tested. We also like to talk about some of the worst trends and biggest disappointments in these pieces, hopefully shaming some of the industry into doing better things next year. This episode focuses on the Best Gaming GPUs of 2019, with categories like Best Overall, Most Well-Rounded, Best Modding Support, Best Budget, and more. NVIDIA and AMD have flooded warehouse shelves with cards over the past 11 months, but it’s finally calming down and coming to a close. Time to recap the Best GPUs of 2019, with all links in the description below for each card.

We’ve already posted two of our end-of-year recaps, one for Best Cases of 2019, the other for Best CPUs of 2019, and now we’re back with Best GPUs. As a reminder for this content type, our focus is to help people building systems with a quick-reference recap for a year’s worth of testing. We’re not going to deep-dive with a data-centric approach, but rather quickly cover the stack in a quicker fashion. If you want deep-dive analytics or test data for any one of these devices, check our reviews throughout the year. Note also that, although we will talk about partner models a bit, the “Best X” coverage will focus on the GPU itself (made by AMD or NVIDIA). For our most recent partner recap, check out our “Best RX 5700 XT” coverage.

It’s that time of year again where we decide which case manufacturers deserve our praise and a GN Teardown Crystal, and which deserve eternal shame and have to pay $19.99 for their own Teardown Crystal from store.gamersnexus.net. Last year, the Lian Li O11 Dynamic took the prize for Best All-Around, and the Silverstone PM02 and Fractal Define S2 took home the “Best Worst” Trend award for the unforgivable sin of being pointless refreshes. Also, the PM02 is just a bad case. This year’s award nominees pick up from where we left off, starting with the lackluster Thermaltake Level 20 MT in December of 2018. Spoilers: it didn’t win anything.

With over 220 rows of case data now -- or maybe more, we haven’t really checked too recently -- there’s a lot to consider in our round-up of the best cases for 2019. Fortunately, that list instantly gets whittled-down to, well, just 2019’s data, which is still populous. With the prevalence of several bad cases this year, we can narrow the list further to focus on only the most deserving of recognition. This article will continue after the embedded video.

Having reviewed over a dozen CPUs this year, it’s time to round-up the Best of 2019 with the first instalment of our annual GN Awards show. In this series, we’ll pick the best products for categories like performance, overall quality, gaming, overclocking, and more. Our goal today is to help you parse the best CPUs in each category so that you can pick the right parts for PC build purchases during Black Friday, Cyber Monday, and other holiday sales. 

At the end of this content, one of the two companies will walk away with a GN Award Crystal for its efforts this year. Our award crystals are 3D laser-engraved glass cubes that feature a GN tear-down logo, replete with easter eggs like MOSFETs, inductors, VRMs, PCIe slots, fans, and even screws, all in 3D.

Thermal Design Power, or TDP, is a term used by AMD and Intel to refer in an extremely broad sense to the rate at which a CPU cooler must dissipate heat from the chip to allow it to perform as advertised. Sort of. Depending on the specific formula and product, this number often ends up a combination of science-y variables and voodoo mysticism, ultimately culminating in a figure that’s used to beat-down forum users over which processor has a lower advertised “TDP”. With the push of Ryzen 3000, we’re focusing today on how AMD defines TDP and what its formula actually breaks into, and how that differs from the way cooler manufacturers define it. Buying a 95W TDP processor and a 95W TDP CPU cooler doesn’t mean they’re perfectly matched, and TDP is a much looser calculation than most would expect. There’s also contention between cooler manufacturers and CPU manufacturers over how this should be accurately calculated versus calculated for marketing, something we’ll explore in today’s content.

This content comes from an earlier-published feature-length video we made. We don’t really make any profit on the articles, but maintain them anyway as a point of reference. If you’d like to support deep-dive, long-form content like this, please consider supporting us the following ways:

  1. Watching the video is a great way, but we know that you’re here because you prefer reading! It’s faster, after all
  2. Grabbing a GamersNexus GPU Disassembly Toolkit, an anti-static GN Modmat (available in medium & classic large), T-shirt, GPU anatomy poster, glassware, or other merch to support us
  3. Contributing to our efforts on Patreon

The article continues after the embedded video. Please note that some off-the-cuff/unscripted commentary will not be ported to the article, so you may miss on some commentary, but most of it is here.

Memory speed on Ryzen has always been a hot subject, with AMD’s 1000 and 2000 series CPUs responding favorably to fast memory while at the same time having difficulty getting past 3200MHz in Gen1. The new Ryzen 3000 chips officially support memory speeds up to 3200MHz and can reliably run kits up to 3600MHz, with extreme overclocks up to 5100MHz. For most people, this type of clock isn’t achievable, but frequencies in the range of 3200 to 4000MHz are done relatively easily, but then looser timings become a concern. Today, we’re benchmarking various memory kits at XMP settings, with Ryzen memory DRAM calculator, and with manual override overclocking. We’ll look at the trade-off of higher frequencies versus tighter timings to help establish the best memory solutions for Ryzen.

One of the biggest points to remember during all of this -- and any other memory testing published by other outlets -- is that motherboard matters almost more than the memory kit itself. Motherboards are responsible for most of the timings auto configured on memory kits, even when using XMP, as XMP can only store so much data per kit. The rest, including unsurfaced timings that the user never sees, are done during memory training by the motherboard. Motherboard manufacturers maintain a QVL (Qualified Vendor List) of kits tested and approved on each board, and we strongly encourage system builders to check these lists rather than just buying a random kit of memory. Motherboard makers will even tune timings for some kits, so there’s potentially a lot of performance lost by using mismatched boards and memory.

We’ve gotten into the habit of fixing video cards lately, a sad necessity in an era plagued with incomplete, penny-pinching designs that overlook the basics, like screw tension, coldplate levelness, and using thermal pads that are about 60% smaller than they should be. MSI’s RX 5700 XT Evoke OC (review here) is the newest in this growing list of cards that any user could fix, unfortunately, and it’s for reasons we illustrated best in our tear-down of the card. Our testing illustrated that its cooling capabilities are sub-par when compared to the Sapphire Pulse, and not only that, but that the memory temperatures are concerningly high when noise-normalized in our benchmarks. Today, we’re fixing that with properly sized thermal pads.

This is a quick and straightforward piece inspired by a Reddit post from about a week ago. The reddit post was itself a response to a video where a YouTuber claimed to be lowering temperatures and boosting performance on Ryzen 3000 CPUs by lowering the vcore value in BIOS; we never did catch the video, as it has since been retracted and followed-up by the creator and community with new information. Even though the original content was too good to be true, it was still based on a completely valid idea -- lowering voltage, 50% of the equation for power -- will theoretically reduce thermals and power load. The content ended up indirectly demonstrating some unique AMD Ryzen 3000 behaviors that we thought worth testing for ourselves. In this video, we’ll demonstrate how to know when undervolting is working versus not working, talk about the gains or losses, and get some hard numbers for the Master and Godlike motherboards.

With the launch of the Ryzen 3000 series processors, we’ve noticed a distinct confusion among readers and viewers when it comes to the phrases “Precision Boost 2,” “XFR,” “Precision Boost Overdrive,” which is different from Precision Boost, and “AutoOC.” There is also a lot of confusion about what’s considered stock, what PBO even does or if it works at all, and how thermals impact frequency of Ryzen CPUs. Today, we’re demystifying these names and demonstrating the basic behaviors of each solution as tested on two motherboards.

Precision Boost Overdrive is a technology new to Ryzen desktop processors, having first been introduced in Threadripper chips; technically, Ryzen 3000 uses Precision Boost 2. PBO is explicitly different from Precision Boost and Precision Boost 2, which is where a lot of people get confused. “Precision Boost” is not an abbreviation for “Precision Boost Overdrive,” it’s actually a different thing: Precision Boost is like XFR, AMD’s Extended Frequency Range boosting table for boosting a limited number of cores when possible. XFR was introduced with the first Ryzen series CPUs. Precision Boost takes into account three numbers in deciding how many cores can boost and when, and those numbers are PPT, TDC, and EDC, as well as temperature and the chip’s max boost clock. Precision Boost is enabled on a stock CPU, Precision Boost Overdrive is not. What PBO does not ever do is boost the frequency beyond the advertised CPU clocks, which is a major point that people have confused. We’ll quote directly from AMD’s review documentation so that there is no room for confusion:

Silicon quality and the so-called silicon lottery are often discussed in the industry, but it’s rare for anyone to have enough sample size to actually demonstrate what those phrases mean in practice. We asked Gigabyte to loan us as many of a single model of video card as they could so that we could demonstrate the frequency variance card-to-card at stock, the variations in overclocking headroom, and actual gaming performance differences from one card to the next. This helps to more definitively strike at the question of how much silicon quality can impact a GPU’s performance, particularly when stock, and also looks at memory overclocking and range of FPS in gaming benchmarks with a highly controlled bench and a ton of test passes per device. Finally, we can see the theory of how much one reviewer’s GPU might vary from another’s when running initial review testing.

Page 1 of 22

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge