Hardware Guides

Liquid-cooling the AMD Vega: Frontier Edition card has proven an educational experience for us, yielding new information about power leakage and solidifying beliefs of a power wall. We also learned that overclocking without thermal barriers (or thermal-induced power barriers) grants significant performance uplift in some scenarios, including gaming and production, though is done at the cost of ~33A from the PSU over 12V PSU power.

Our results for the AMD Vega: Frontier Edition liquid-cooling hybrid mod are in, and this review covers the overclocking scalability, power limits, thermal change, and more.

The Hybrid mod was detailed in build log form over in part 1 of the endeavor. This mod wasn’t as straight-forward as most, seeing as we didn’t have any 64x64mm brackets for securing the liquid cooler to the card. Drilling through an Intel mounting plate for an Asetek cooler, we were ultimately able to get an Asetek 570LC onto the card, which we later equipped with a Gentle Typhoon 120mm fan. VRM FET cooling was handled by aluminum finstacks secured by thermal adhesive, cooled with 1-2x Corsair ML120 fans. That said, this VRM cooling solution also wasn’t necessary – we could have operated with just the fans, and did at one point operate with just the heatsinks (and indirect airflow).

Our newest revisit could also be considered our oldest: the Nehalem microarchitecture is nearly ten years old now, having launched in November 2008 after an initial showing at Intel’s 2007 Developer Forum, and we’re back to revive our i7-930 in 2017.

The sample chosen for these tests is another from the GN personal stash, a well-traveled i7-930 originally from Steve’s own computer that saw service in some of our very first case reviews, but has been mostly relegated to the shelf o’ chips since 2013. The 930 was one of the later Nehalem CPUs, released in Q1 2010 for $294, exactly one year ahead of the advent of the still-popular Sandy Bridge architecture. That includes the release of the i7-2600K, which we’ve already revisited in detail.

Sandy Bridge was a huge step for Intel, but Nehalem processors were actually the first generation to be branded with the now-familiar i5 and i7 naming convention (no i3s, though). A couple features make these CPUs worth a look today: Hyperthreading was (re)introduced with i7 chips, meaning that even the oldest generation of i7s has 4C/8T, and overclocking could offer huge leaps in performance often limited by heat and safe voltages rather than software stability or artificial caps.

We’ve already endured one launch of questionable competence this quarter, looking at X299 and Intel’s KBL-X series, and we nearly escaped Q2 without another. Vega: Frontier Edition has its ups and downs – many of which we’ll discuss in a feature piece next week – but we’re still learning about its quirks. “Gaming Mode” and “Pro Mode” toggling is one of those quirks; leading into this article, it was our understanding – from both AMD representatives and from AMD marketing – that the switch would hold a relevant impact on performance. For this reason, we benchmarked for our review in the “appropriate” mode for each test: Professional applications used pro mode, like SPECviewperf and Blender. Gaming applications used, well, gaming mode. Easy enough, and we figured that was a necessary methodological step to ensure data accuracy to the card’s best abilities.

Turns out, there wasn’t much point.

A quick note, here: The immediate difference when switching to “Gaming Mode” is that WattMan, with all its bugginess, becomes available. Pro Mode does not support WattMan, though you can still overclock through third-party tools – and probably should, anyway, seeing as WattMan presently downclocks memory to Fury X speeds, as it seems to have some leftover code from the Fury X drivers.

That’s the big difference. Aside from WattMan, Gaming Mode technically also offers AMD Chill, something that Pro Mode doesn’t offer a button to use. Other than these interface changes, the implicit, hidden change would be an impact to gaming or to production performance.

Let’s briefly get into that.

Reader and viewer requests piled high after our Vega: Frontier Edition review, so we pulled the most popular one from the stack to benchmark. In today’s feature benchmark, we’re testing Vega: FE vs. the R9 Fury X at equal core clocks, resulting in clock-for-clock testing that could be loosely referred to as an “IPC” test – that’s not exactly the most correct phrasing, but does most quickly convey the intent of the endeavor. We’ll use the phrase “academic exercise” a few times in this piece, as it’s difficult to draw strong conclusions to other Vega products from this test; ultimately, GPUs simply have too many moving parts to simulate easier IPC benchmarks like you’d find on a CPU. As one limitation is resolved, another emerges – and they’re likely different on each architecture.

Regardless, we’re testing the two GPUs clock for clock to see how Vega: FE responds with the Fury X in the ring.

Following our AMD Radeon Vega: Frontier Edition review and preceding tear-down, Buildzoid has now returned to analyze the AMD Vega: Frontier Edition PCB & VRM. This is a 12-phase design (doubled-up 6) that ultimately resembles something similar to a 290X Lightning, making it the hands-down best VRM we've seen on a reference card. Given that Vega: FE is $1000, that sort of makes sense -- but Buildzoid does pose some questions as to what's necessary and how much current is really going through the card.

Keeping marketing checked by reality is part of the reason that technical media should exist: Part of the job is to filter out the adjectives and subjective language for consumers and get to the objective truth. Intel’s initial marketing deck contained a slide that suggested their new X-series CPUs could run 3-way or 4-way GPUs for 12K Gaming. Those are their exact words: "12K Gaming," supported by orange demarcation for the X-series, whereas it is implicitly not supported (in the slide) on the K-SKU desktop CPUs. Not to speak of how uncommon that resolution is, this also isn’t a real resolution. Regardless, we’re using this discussion of Intel’s "12K" claims as an opportunity to benchmark two x8 GPUs on a 7700K with two x16 GPUs on a 7900X, with some tests disabling cores and boosting clock. We have also received a statement from Intel to GamersNexus regarding the marketing language.

First of all, we need to define a few things: Intel’s version of 12K is not what you’d normally expect – in fact, it’s actually fewer pixels than 8K, so the naming is strongly misleading. Let’s break this down.

Best Gaming PC Cases of Computex 2017

By Published June 07, 2017 at 6:31 pm

This year’s Computex featured the usual mix of concept and prototype cases, some of which will never make it to market (or some which will be several thousand dollars, like the WinBot). We particularly liked the “Wheel of Star” mod at Cooler Master, the “Floating” from In Win, Level 20 from Thermaltake, and Concept Slate from Corsair – but none of those are really meant to be bought in large quantities. This round-up looks at the best cases of Computex that are in the category of being purchasable, keeping cost below $400. We’ll be looking primarily at ATX form factor cases, with one Micro-STX co-star, with a few “needs work” members in the mix.

This case round-up won’t include everything we saw at the show and will exclude the more exotic cases, like the Concept Slate and the In Win WinBot, but still has plenty to get through. Before getting started, here’s a list of the relevant coverage of individual products and booths that are discussed herein:

When we made our “how air coolers work” video, a lot of viewers were interested in the inner workings of copper heatpipes and their various means of facilitating capillary action. Today, we’re revisiting our TLDR series with a video on how closed-loop liquid coolers work. We’ll be talking about permeation, air pockets, stators, impellers, coldplates, and chemical composition of the coolant.

This content has custom-made animations that we rendered specifically for explanation of how CLCs work. GN’s Andrew Coleman modeled and animated a closed-loop cooler for the piece, referencing NZXT’s Kraken X52. Because of the level of detail and custom animations of this content, NZXT sponsored GN to put this piece together. The content applies to all liquid coolers, but particularly focuses on closed-loop products; all concepts herein can be applied to CLCs across the industry from various suppliers and manufacturers. Our technical deep-dive for today serves as a means to fully detail liquid cooling and how it works, drilling down to piano-wire granularity (literally).

One of the most frustrating aspects of the hardware industry is when a company made a perfectly viable product, but somehow flummoxed execution. The consumer doesn’t see the architecture or the engineering – at least, not outside of reviews – they see the full picture. In this capacity, consumers get a view of a product that is similar to a product manager’s: The big picture as it comes together, seeing past all the smaller details along the way.

A GPU might, for instance, be a powerhouse when analyzed under an SEM or in a vacuum, but could prove hamstrung in adverse thermal conditions resultant of an inadequate cooler. More appropriately, a laptop could host the best mobile hardware available, but prove devalued when flooded with unneeded software. The fastest SSD in the business, as bogged down with bloatware, will still be slower than a clean Windows install on a fresh HDD.

This big picture is sometimes lost to the chaos of marketing development efforts, particularly when MDF starts exchanging hands, and lost in the need to turn a profit in an industry with small margins. That’s what happened with MSI’s laptops: These are completely capable, highly competitive laptops that demand attention – but they’re plagued with an ineffable concoction of applications, responsible for doubling time required to boot. That’s not all, either – we have measured an impact to noise output as the CPU boosts sporadically, an unpredictable and spurious impact to frametimes, an impact to battery life, and an overall reduction in product quality.

All because of bloatware.

Over the past few years, we’ve built up an impressive stockpile of case reviews, the most common of which are sub-$100 ATX mid-towers. This is a roundup of some of our favorites, wildly different in purpose and appearance but all solid, affordable enclosures for the average gaming PC. Our best cases feature includes temperature and acoustic testing, and build quality discussion for the top PC cases under $100.

Everything here is something we’ve worked with in person, either in the lab or at tradeshows; if you feel something is missing, it is likely that we simply didn’t test it. We’re trying to keep the list to things released in the past year (or so), which means chart-toppers of previous eras are being skipped.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge