Another week, another HW News. While not as busy as last week, we’ve still got some interesting stories. For instance, Linus Torvalds, the creator of Linux, as well as the main Linux kernel developer, has moved to AMD CPUs for his personal machine -- after 15 some years of Intel-based machines. There’s also a new development in the ongoing SMR saga: Class action lawsuits are being brought against WD in both the US and Canada.  

We also have news of changes to the numbering of AMD’s AGESA microcode updates, updated ARM IP, Intel finally overhauling its stock coolers, and a terrible Nintendo Switch clone that’s begging to be sued. 

On the GN side of things, we’ve been busy analysing Intel’s newest 10th-gen (Comet Lake-S) K-SKU CPUs and their respective Z490 platform. Most recently, we looked at the extreme auto voltage settings on Z490, including Vcore, power limit, and MCE. We also looked at the i5-10400 and i7-10700K. Spoiler alert: they’re both hard to justify. 

Article and video embed follow below, as usual.

It’s difficult to differentiate motherboards, at least from a marketing perspective. There are definitely better and worse boards, and you can check any of the roundups or reviews Buildzoid has produced for this channel for explanations as to why, but “better” doesn’t mean “higher FPS in games” here. Using higher-quality or more expensive components doesn’t always translate directly into running Fortnite at a higher framerate, which makes it harder to communicate to consumers why they should spend $200 on board X instead of $100 on board Y if both can run the same CPUs. This has led to motherboard manufacturers playing games with numbers for boost duration, voltages, BCLK, and other settings in order to differentiate their boards from the competition with tangible performance increases.

We’ve talked about Intel turbo and “Multi-Core Enhancement” many, many times in the past. This serves as a companion piece to the most recent of these, our “Intel i9-10900K ‘High’ Power Consumption Explained” video. To reiterate, Intel’s specification defines turbo limits--the multipliers for boosting on one core, two cores, etc, all the way up to an all-core turbo boost. Here are some examples from Coffee Lake’s launch (8700K) and before:

With the new influx of CPUs from AMD and Intel, and more rumored on the horizon, we wanted to round-up all of our recent testing into one concise piece for people looking for recommendations on the best CPU for different tasks. We’ve published several hours’ worth of content in the form of reviews, tuning, and follow-up coverage, so if you want the full details and depth for anything check those pieces. We’ll be focusing more on firm recommendations for each category in this video and less on the deeper details, with our categories including: Best gaming CPU, best budget gaming CPU, best small business or hobbyist production CPU, best workstation CPU, best overall, most fun to overclock, and most disappointing.

Another busy week of hardware news is in the books, and there’s a lot to talk about. Perhaps most notably, AMD has performed its 180 in regards to Zen 3 support on B4xx chipsets, enabling a one-way upgrade path for those wanting to migrate to Ryzen 4000 later this year. We have an exhaustive (pt1) video (pt2) series (pt3) dedicated to the topic and the current state of BIOSes, so we won’t delve into it here.

As ever, there’s more broad industry news, such as Microsoft admitting it was on the wrong side of the open-source explosion at the turn of the century, and TSMC pulling all chip orders from Huawei thanks to ever tightening US export restrictions. We have yet to see how this will affect Huawei, but it is almost certainly going to be detrimental to its business.

Within GN specifically, we’ve completely sold out of our GN wireframe mouse mats -- thanks for the support! More mouse mats are currently on back-order for the next production run. We expect those back-orders will ship in August. Meanwhile, we’ve posted our i9-10900K review and i5-10600K review, both of which look at frequency performance, overclocking, die sanding tests, and more. It also seems AMD has dropped the price on its Ryzen 9 3900X in response to Comet Lake-S. Additionally, if you happen to live near a MicroCenter, there’s an in-store promotion that will get you the Ryzen 9 3900X for $380.

Follow below for the video embed and article.

Intel’s continuing to bring the heat, literally and figuratively, and is now leveling its new 10C/20T part squarely at AMD. We have a separate in-depth review coming up on the 10600K, which has interesting implications for the R5 3600 and the realm of gaming, but for launch, we need to start with the flagship 10900K. That’s not the 10900X, mind you, but the 10900K, which is the part socketable for LGA1200 and Z490 motherboards. We’ll be looking at whether Intel’s die sanding worked for leveling-off thermals, benchmarking games, initial overclocking on the ASUS Max XII Extreme, production workloads versus the 3900X, and more.

UPDATE: Intel i5-10600K review is now live: https://www.youtube.com/watch?v=iQVBlCfb72M

The Thermaltake Level 20 RS ARGB is part of a small resurgence of Cooler Master HAF-esque cases that have come out in the wake of the H500P, with the two big 200mm RGB front intake fans that were distinctive of that case. We’re not going to try to pick apart Thermaltake’s naming conventions this time, so we’ll just say that although the chassis clearly reuses tooling from some earlier case, it’s not the Level 20 MT that we reviewed in 2018. This Level 20 uses mesh.

It’s been another interesting week in the realm of hardware and technology. The week started off slowly, but ended with a deluge of interesting stories, mostly as it relates to US semiconductor manufacturing. In addition to Intel and Samsung in talks with the Department of Defense, it looks as if TSMC will be adding a second fab to its US roster.

We also have news on AMD’s open-source GPUOpen, and its apparently not so open-source  Radeon Rays solution. Sometimes. There’s also news on the recently unveiled Unreal Engine 5 and how Epic CEO Tim Sweeney feels about the SSD storage solutions in the PlayStation 5. 

Elsewhere at GN, we recently covered Nvidia’s GTC 2020 keynote where Ampere was formally announced -- check out both the article and video. We’ve also been extensively overclocking the Ryzen 3 3100, as well as the AMD Ryzen 3 3100 Infinity Fabric clock (FCLK). 

Linus might have competition from NVIDIA CEO Jensen Huang, who today published the GTC 2020 keynote from his kitchen, given the current world circumstances. The company’s GTC event has rarely featured gaming product launches over the last few years, but often features the architectures that lead into them. Volta is a good example of this, where we didn’t really get gaming cards, but we saw what led to Turing. At this year’s event, the company showed off its new Ampere architecture, with a split-focus on reminding us of gaming and ray tracing advancements while also highlighting all the usual AI, machine learning, and deep learning processing goals of the architecture. Ampere sounds like it’ll be coming down to gaming at some point, as opposed to the Volta/Turing relationship, where they were technically different architectures and launches.

We thought NVIDIA might livestream a pre-recorded video, but the company ended up uploading multiple edited videos into at least 8 parts at time of writing (ed: ended up being 9). Admittedly, some of them were a little hard to listen to with obvious cuts and shoved-in words, but we’re probably more sensitive to that than most since we make so many videos here and deal with that weekly.

This article is a direct paste from our video script due to tight timelines on turning content around for news.

Before beginning this week's hardware news recap, we'd like to highlight for our readers -- or those who just prefer referencing our articles rather than scrubbing through videos at a later date -- that we've been making a bigger push to publish written content to the site lately. This site serves almost more as an archive for the scripts than anything else these days, just because the nature of maintaining it is very difficult given our current working hours, but we like it and we know that all of you like the written format. We've made an active effort in increasing how many of our videos (from YouTube) end up on the website in written form, so we published the AMD Ryzen 3 3100 review, Ryzen 3 3300X review, and our B550 vs. X570 (et al) chipset comparison. Check them out on the home page.

In the meantime, we've got a lot of hardware news for the week to recap: The FCC is being forced to reveal its server logs for concerns stemming from fake comments about net neutrality, NVIDIA and AMD are vying over 5nm supply from fab TSMC, RTX Ampere is getting an announcement this week, Intel Alder Lake and LGA1700 are in the rumor mill, and more.

In this content, we’re going to be breaking-down the AMD B550 vs. X570, B450, X470, X370, and A320 chipset specifications number-by-number. Our goal is to look at this purely from a facts-based angle of what the differences are, and those differences will include both numerical specification differences (number and type of lanes afforded) and forward or backwards compatibility differences. This includes the intent of the 500-series chipsets to support Zen 3 architecture (reminder: that’s not the same as Ryzen 4000 mobile, nor is it the same as Ryzen 3000 desktop), while the existing B450 and X470 boards are left to cap-out at Ryzen 3000 series (Zen 2) parts.

We have some additional discussion of the basics of naming, including CPU naming distinctions, in our video component that accompanies this article. You may get more information on the differences between AMD Zen generations and Ryzen generations in that content.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge