The Ryzen 3 CPUs round-out AMD’s initial Ryzen offering, with the last remaining sector covered by an impending Threadripper roll-out. Even before digging into the numbers of these benchmarks, AMD’s R3 & R5 families seem to have at least partly influenced competitive pricing: The Intel i3-7350K is now $150, down from its $180 perch. We liked the 7350K as a CPU and were excited about its overclocking headroom, but found its higher price untenable for an i3 CPU given then-neighboring i5 alternatives.

Things have changed significantly since the i3-7350K review. For one, Ryzen now exists on market – and we’ve awarded the R5 1600X with an Editor’s Choice award, deferring to the 1600X over the i5-7600K in most cases. The R3 CPUs are next on the block, and stand to challenge Intel’s freshly price-reduced i3-7350K in budget gaming configurations.

There’s no doubt that most the news circulating right now will pertain to AMD’s new driver update – and it’s an impressive update, one which we’ll discuss below, but we wanted to revive the “gaming” & “pro” mode discussion.

In speaking with AMD about its “Gaming” and “Pro” toggle switch in the Vega drivers – something we previously demonstrated to be a UI-only switch – we learned that the company intends to do something more meaningful going forward. As of now, the toggle is nothing more than a psychological switch, limiting its usefulness to removing the WattMan button from the UI – not all that useful, in other words. Functionally pointless for Vega: FE as it launched, and symptomatic of a driver package which was either woefully incomplete or intended to encourage a placebo effect.

Thermaltake has released its Core G21 TG (tempered glass) Edition case, and it’s only $70 -- more proof that glass panels don’t need to be expensive. Despite the name, there’s no product listing for a non-TG Edition G21, although the View 21-TG that was displayed alongside it at Computex shares the same tooling with a different front panel.

Today’s review looks at the Thermaltake Core G21 TG case for build quality, thermals, and acoustics, with additional testing on optimal fan placement and fan configurations.

GamersNexus today received word from a manufacturer (that asked to remain unnamed) that AMD’s Threadripper CPUs will include Asetek retention kits in the retail packaging for the product, though a cooler itself will not be included; at least, not in the initial launch of Threadripper products. From what we’ve seen of AMD’s unveiled box, it’s clear that no cooler is included, but the Asetek retention kit will permit all Asetek-made CLCs to mount Threadripper at launch. This would include popular products like the NZXT Kraken series, EVGA CLC series, and about half of Corsair’s coolers (the other half being CoolIT-made). The H100iV2 and H115i are included in the list of Asetek-made Corsair coolers, for clarity.

This week's hardware news recap covers rumors of Corsair's partial acquisition, HBM2 production ramping, Threadripper preparation, and a few other miscellaneous topics. Core industry topics largely revolve around cooler prep for Threadripper this week, though HBM2 increasing production output (via Samsung) is also a critical item of note. Both nVidia and AMD now deploy HBM2 in their products, and other devices are beginning to eye use cases for HBM2 more heavily.

The video is embedded below. As usual, the show notes rest below that.

Every now and then, a content piece falls to the wayside and is archived indefinitely -- or just lost under a mountain of other content. That’s what happened with our AMD Ryzen pre-launch interview with Sam Naffziger, AMD Corporate Fellow, and Michael Clark, Chief Architect of Zen. We interviewed the two leading Zen architects at the Ryzen press event in February, had been placed under embargo for releasing the interview, and then we simply had too many other content pieces to make a push for this one.

The interview discusses topics of uOp cache on Ryzen CPUs, power optimizations, shadow tags, and victim cache. Parts of the interview have been transcribed below, though you’ll have to check the video for discussion on L1 writeback vs. writethrough cache designs and AMD’s shadow tags.

 

Part of our 4K camera upgrade was for ergonomics – better ability to handle the camera, particularly in show floor environments – with most the other reasons centering around quality. Camera quality is superior in every technical sense, low-light and noise reduction being a major area of improvement, but working with larger files at higher bit-rates means longer render times. We can now capture up to 200Mbps (previously captured 28Mbps) at 4K resolution, and we output at 2x the bit-rate of our previous 1080p60 videos. Render times have skyrocketed, as you’d expect, and have gone from roughly video duration + a few minutes to an hour per 20-minute video.

There’s not a lot we can do about this. Adobe Premiere, sadly, does not really do much with multi-GPU. The GPUs are accelerators, with rendering still falling on the CPU for a lot of the workload. We’re becoming more thread-limited than anything at this point, and really don’t want to build an entirely new production system right now. For now, upgrading the primary GPU to a 1080 Ti will help us out a bit in Premiere and significantly in Blender.

For those who don't follow the YouTube channel as closely as the website, it's possible that you may have missed out on our first two livestreams. Both have VODs up on the YouTube channel over here: GN Live #1 - Seidon Cooler Tear-Down & GN Live #2 - EK Open Loop & Vega Work.

We don't have any plans to start a regularly scheduled stream, but we are working on just streaming when the team is building/unbuilding things anyway. For now, we wanted to take apart and build the stuff shown in streams #1 and #2, so it made sense to set them live.

“Good for streaming” – a phrase almost universally attributed to the R7 series of Ryzen CPUs, like the R7 1700 ($270 currently), but with limited data-driven testing to definitively prove the theory. Along with most other folks in the industry, we supported Ryzen as a streamer-oriented platform in our reviews, but we based this assessment on an understanding of Ryzen’s performance in production workloads. Without actual game stream benchmarking, it was always a bit hazy just how the R7 1700 and the i7-7700K ($310 currently) would perform comparatively in game live-streaming.

This new benchmark looks at the AMD R7 1700 vs. Intel i7-7700K performance while streaming, including stream output/framerate, drop frames, streamer-side FPS, power consumption, and some brief thermal data. The goal is to determine not only whether one CPU is better than the other, but whether the difference is large enough to be potentially paradigm-shifting. The article explores all of this, though we’ve also got an embedded video below. If video is your preferred format, consider checking the article conclusion section for some additional thoughts.

Ask GN returns for its 54th episode – we’ve gotten more consistent than ever – to discuss Noctua fan manufacturing locations (China & Taiwan), thermal pads vs. thermal paste usage on MOSFETs, Vega 10-bit support, and a couple other items.

A few of the items from this week peer into GN’s behind-the-scenes workings, as several viewers and readers have been curious about our staff, whether we keep products, or why we “waste” GPUs by using them for things other than mining.

As always, timestamps below the embed.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge