Lapped AMD Ryzen IHS Thermal Results

By Published May 07, 2018 at 3:26 pm

In case you find it boring to watch an IHS get sanded for ten minutes, we’ve written-up this recap of our newest video. The content features a lapped AMD Ryzen APU IHS for the R3 2200G, which we previously delidded and later topped with a custom copper Rockit Cool IHS. For this next thermal benchmark, we sanded down the AMD Ryzen APU IHS with 600 grit, 1200 grit, 1500 grit, 2000 grit, and then 3000 grit (wet) to smooth-out the IHS surface. After this, we used a polishing rag and compound to further buff the IHS (not shown in the video, because it is exceptionally boring to watch), then we cleaned it and ran the new heatspreader through our standardized thermal benchmark.

Memory Industry Exposé Exclusive | GN Report

By Published May 06, 2018 at 9:13 pm

We wrote a couple of scripts to scrape the data shown in this content, showing memory price trends for the year so far. We recently set forth on an information gathering mission to learn about how much it costs to actually buy different types of memory, allowing us to look at just how much the memory suppliers are making. They’re raking in record profits with record stock highs – just look at the below Hynix or Micron stock chart: Despite claimed cleanroom limitations, the companies are making record revenue. Today, we’re talking about why and how the memory industry is in the shape it’s in.

1 memory prices all

This is Part 2 of our RAM Report series. The first part aired previously, and dug deep into five years of memory price data and earnings results for memory suppliers. Be sure to read or watch that content if you haven’t already.

Last month, we published an article detailing the FTC addressing predatory warranty conditions, and in so doing, the FTC notified six companies of infractions violating the Magnuson-Moss Warranty Act. At the time of that writing, the names of the notified companies were not disclosed; however, Motherboard obtained the names via a Freedom of Information Act request, and they are as follows:

NZXT’s Kraken X72 closed-loop liquid cooler is another in the XX2 series, following the 280mm X62 that we previously reviewed. The X72 is a 360mm cooler, putting it in more direct competition with the Corsair H150i Pro (the first to feature a 6th-gen pump) and Fractal S36, and indirect competition – in performance only – with the EVGA CLC 280.

NZXT’s X72 costs $200, making it one of the most expensive CLCs on the market. The Floe 360 lands at around $184, the EK Phoenix 360 – a semi-open solution – is the only one that lands significantly higher. The X72 still uses the same pump design as when we tore-down the X42, running Asetek’s 5th Gen pump and a custom, NZXT-designed PCB for RGB lighting effects. Functionally, 5th Gen has proven to be marginally superior – technically – to its 6th Gen for outright cooling performance. We’re talking nearly margins of error. The newest generation is presently only used on Corsair’s H150i and H115i Pro products, as Corsair largely dictated what went into the 6th generation. Major differences are made-up by the metal impeller, similar to the one used by Dynatron in old Antec Kuhler products, rather than a 3-prong plastic impeller. These don’t perform differently in terms of thermals, but there should be reduced susceptibility to heated liquid, and theoretically reduced hotspots as a result of the new 6th Generation design. That doesn’t manifest in outright performance, but might manifest in endurance. We won’t know for a few years, realistically.

Our primary tests for the NZXT Kraken X72 review and benchmark include the following:

  • 100% fan / 100% pump
  • 100% fan / silent pump
  • 63% fan (40dBA)

We’ve previously tested custom copper integrated heat spreaders (IHS) for Intel, primarily the unit sold by Rockit Cool for LGA115X CPUs. Our findings of the custom copper IHS (sold here) for the i7-8700K were that, generally, it was a fun, worthwhile project at $20, but that the thermal improvement was not game-changing. It was still impressive, though, as we monitored between 4-5 degrees Celsius improvement from the IHS replacement on the 8700K, partly benefiting as a result of the increased surface area over the stock Intel heat spreader. That’s a lot of uplift for something that isn’t a CPU cooler, and if you’re up against hard requirements for noise in your system, it could allow for just enough headroom to slow-down the case fans a bit more.

Ryzen is different, as its heatspreader is one large block, as opposed to a machined block with cut-outs and dips and generally smaller surface area. Rockit Cool improved on Intel IHS performance by increasing surface area, but had little to improve on with AMD’s. Both Intel and AMD use copper IHS units, but all of them are nickel-plated. This shouldn’t impact performance significantly and helps with cleaning.

Today, we’re benchmarking a custom copper IHS for AMD Ryzen CPUs and APUs, using the Rockit Cool copper IHS on an AMD R3 2200G that we previously delidded and benchmarked.

The headlining story for the past week covers the memory supplier class action that was recently filed (vs. SK Hynix, Samsung, and Micron), alleging conspiracy to fix prices. In contension for the headline story, Intel's 10nm process problems have grown more complicated, seemingly preempting the company's hiring of Jim Keller, former AMD Zen architect.

Our Ask GN series was put on hold during the onslaught of Ryzen 2, Hades Canyon, and X470 coverage of late. We're back in force, though, with two back-to-back episodes. The second will go live tomorrow, the first tonight. For this week's episode, we're talking B450 motherboard expectations (and Computex), realistic ways the GPU market might make a comeback, review sampling, HPET benchmarks, and more.

Separately, please note that we are planning a livestream for 5/1 at 7PM EST. The stream will be hosted on our YouTube channel. We will be attempting to overclock Hades Canyon further than our current record of 4.7GHz. We're hoping to push closer to 5GHz, but power may become a limitation at some point. We've already posted preliminary results over here. Be sure to tune in for the livestream! It'll be a fun one.

Both Amazon and Newegg both have some noteworthy sales tonight (and some for only tonight), for anyone planning upgrades amidst the current great DIY PC crisis (see: RAM and GPU prices). The best deals include a couple of motherboards and AMD’s Threadripper 1950X. The deals appear to be good for the next 8 hours, at the time of this writing.

Some controversy bubbled-up recently when reddit, as it does, found its newest offense at which it could express collective rage. That offense was AMD’s CPU warranty, which had previously indicated that any cooler aside from included stock coolers would violate the warranty – not that they’d be able to prove it, if we’re being honest.

We reached-out to AMD for comment when this story went public, and received a response today that AMD had updated its warranty terms for clarity. The original language was meant to prevent warranty replacements for scenarios where the CPU had been damaged by an out-of-spec cooler (think: something like an LN2 pot, or the jury-rigging we do at GN). It was not meant to block warranty replacements for issues unrelated to coolers.

For our 2700/2700X review, we wanted to see how Ryzen 2’s volt-frequency performance compared to Ryzen 1. We took our Ryzen 7 2700X and an R7 1700 and clocked them both to 4GHz, and then found the lowest possible voltage that would allow them to survive stress tests in Blender and Prime95. Full results are included in that review, but the most important point was this: the 1700 needed at least 1.425v to maintain stability, while the 2700X required only 1.162v (value reported by HWiNFO, not what was set in BIOS).

This drew our attention, because we already knew that our 2700X could barely manage 4.2GHz at >1.425v. In other words, a 5% increase in frequency from 4 to 4.2GHz required a 22.6% increase in reported voltage.

Frequency in Ryzen 2 has started to behave like GPU Boost 3.0, where temperature, power consumption, and voltage heavily impact boosting behavior when left unmanaged. Our initial experience with Ryzen 2 led us to believe that a volt-frequency curve would look almost exponential, like the one on the screen now. That was our hypothesis. To be clear, we can push frequency higher with reference clock increases to 102 or 103MHz and can then sustain 4.2GHz at lower voltages, or even 4.25GHz and up, but that’s not our goal. Our goal is to plot a volt-frequency curve with just multiplier and voltage modifications. We typically run out of thermal headroom before we run out of safe voltage headroom, but if voltage increases exponentially, that will quickly become a problem.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge