NZXT H510 Elite Case Review: Making Things Worse

By Published August 08, 2019 at 6:22 pm

The NZXT H510 Elite is NZXT’s premium spin on the H500 -- no, not the Cooler Master H500, not the H500P, not the H500M, and definitely not the 500D or A500, but the NZXT H500. NZXT’s H500 is a case that wasn’t top-of-the-line in thermal performance but that we liked anyway for its good build quality at a very reasonable $70 price point and reasonable thermals. NZXT must be proud of the new H510 Elite, because they sent us two identical ones. The H510 Elite is being introduced alongside the H510, which is the same as the H500, but with a USB type-C port replacing one of the type-A ports on the front pane. It’s also similar to the H510i, which includes an NZXT “Smart Device.” The Elite has a tempered glass front panel, LEDs, and two RGB fans as front intake (3 fans total) as well as the USB-C port and Smart Device. We’ve expressed our opinion on these devices before, intended to automatically run fans at the optimal cool-and-quiet speed, but these new devices are version 2. We plan to do some more testing with them soon, but for the purposes of this review we bypassed the smart device completely and controlled fan speed via the motherboard as usual.

For the purposes of this review, we’re going to pretend no other cases named H500 exist. If we say H500, we mean the NZXT H500. Note also that we had written and filmed this about 3 weeks prior to publishing, but notified NZXT in between writing and now that we had found issues with thermals in the case. As such, NZXT has modified its listing and now offers an extra 120mm exhaust fan (free for those who already bought the case) with the enclosure. We didn’t rewrite our entire review around this change, but added in two charts to cover it where necessary.

This week's hardware news was filmed prior to our trip to Vancouver for LTX, which we're covering in a lot of content pieces coming up. HW News discusses CCX overclocking, 3nm and 5nm process progress, DRAM revenue dropping hard, and industry topics like Origin's sale to Corsair. We also talk about 5.2GHz 3900X overclocking results, but that'll be in the video only for this one. The rest is in the written section below, as always.

This is a quick and straightforward piece inspired by a Reddit post from about a week ago. The reddit post was itself a response to a video where a YouTuber claimed to be lowering temperatures and boosting performance on Ryzen 3000 CPUs by lowering the vcore value in BIOS; we never did catch the video, as it has since been retracted and followed-up by the creator and community with new information. Even though the original content was too good to be true, it was still based on a completely valid idea -- lowering voltage, 50% of the equation for power -- will theoretically reduce thermals and power load. The content ended up indirectly demonstrating some unique AMD Ryzen 3000 behaviors that we thought worth testing for ourselves. In this video, we’ll demonstrate how to know when undervolting is working versus not working, talk about the gains or losses, and get some hard numbers for the Master and Godlike motherboards.

Hardware news for this week is a bit sluggish, with Amazon’s Prime Day -- and the ensuing unrepentant consumerism -- seeming to occupy more than its share of headlines this week. Still, we’ve curated some of the more interesting stories including the latest report from Digitimes and an elucidating interview where Intel CEO Robert Swan cites being “too aggressive” as a key factor in Intel’s CPU shortage. Other topics include information on AMD’s Arcturus GPUs and what form they could take, a Toshiba Memory rebrand, and NZXT adding to its pre-built machines catalog. 

In recent GN news, we’ve delved ever further into Ryzen 3000 and the Zen 2 architecture, including a deep dive into AMD’s Precision Boost Overdrive algorithm, looking at how Ryzen 3000 frequencies scale with temperature, and our R9 3900X overclocking stream.

In some ways, AMD has become NVIDIA, and it’s not necessarily a bad thing. The way new Ryzen CPUs scale is behaviorally similar to the way GPU Boost 4.0 scales on GPUs, where simply lowering the silicon operating temperature will directly affect performance and clock speeds. Under complete, full stock settings, a CPU running colder will actually boost higher now; alternatively, if you’re a glass half-empty type, you could view it such that a CPU running hotter will thermally throttle. Either way, frequency is contingent upon thermals, and that’s important for users who want to maximize performance or pick the right case and CPU cooling combination. If you’re new to the space, the way it has traditionally worked is that CPUs will perform at one spec, with one set of frequencies, until hitting TjMax, or maximum Junction temperature. Ryzen 3000 is significantly different from past CPUs in this regard. Some excursions from this behavior do exist, but are a different behavior and are well-known. One such example would include Turbo Boost durations, which are explicitly set by the motherboard to limit the duration for which an Intel CPU can reach its all-core Turbo. This is a different matter entirely from frequency/cold scale.

An Intel CPU is probably the easiest example to use for pre-Ryzen 3000 behavior. With Intel, there are only two real parameters to consider: The Turbo boost duration limit, which we have a separate content piece on (linked above), and the power limit. If operating within spec, outside of the turbo duration limit of roughly 90-120 seconds, the CPU will stick to one all-core clock speed for the entirety of its workload. You could be running at 90 degrees or 40 degrees, it’ll be the same frequency. Once you hit TjMax, let’s say it’s 95 or 100 degrees Celsius, there’s either a multiplier throttle or a thermal shutdown, the choice between which will hinge upon how the motherboard is configured to respond to TjMax.

With the launch of the Ryzen 3000 series processors, we’ve noticed a distinct confusion among readers and viewers when it comes to the phrases “Precision Boost 2,” “XFR,” “Precision Boost Overdrive,” which is different from Precision Boost, and “AutoOC.” There is also a lot of confusion about what’s considered stock, what PBO even does or if it works at all, and how thermals impact frequency of Ryzen CPUs. Today, we’re demystifying these names and demonstrating the basic behaviors of each solution as tested on two motherboards.

Precision Boost Overdrive is a technology new to Ryzen desktop processors, having first been introduced in Threadripper chips; technically, Ryzen 3000 uses Precision Boost 2. PBO is explicitly different from Precision Boost and Precision Boost 2, which is where a lot of people get confused. “Precision Boost” is not an abbreviation for “Precision Boost Overdrive,” it’s actually a different thing: Precision Boost is like XFR, AMD’s Extended Frequency Range boosting table for boosting a limited number of cores when possible. XFR was introduced with the first Ryzen series CPUs. Precision Boost takes into account three numbers in deciding how many cores can boost and when, and those numbers are PPT, TDC, and EDC, as well as temperature and the chip’s max boost clock. Precision Boost is enabled on a stock CPU, Precision Boost Overdrive is not. What PBO does not ever do is boost the frequency beyond the advertised CPU clocks, which is a major point that people have confused. We’ll quote directly from AMD’s review documentation so that there is no room for confusion:

GN just notched one of its busiest weeks ever, thanks to relentless product launches from AMD and Nvidia. We’ve recently reviewed Nvidia's RTX 2070 Super and RTX 2060 Super, in addition to AMD’s Ryzen 5 3600, Ryzen 9 3900X, and Radeon RX 5700 XT. We also have multiple videos further analyzing Ryzen 3000 boost clocks and the RX 5700 XT cooling solution.

If you’ve enjoyed this coverage, please consider supporting our focused efforts through a GN store purchase.

For mostly non-AMD related news this week, Intel has announced multiple new technologies focused on chip packaging, in addition to hiring a new CCO in Claire Dixon. MSI is updating its AM4 400-series of motherboard to include a larger BIOS chip, there’s a new PCIe 4.0 SSD coming, with a presumably cheaper 500GB capacity, and we’re expecting custom Navi cards in August. The news stories follow the video embed, per the usual.

Alongside the 3900X and 3700X that we’re also reviewing, AMD launched its R5 3600 today to the public. We got a production sample of one of the R5 3600 CPUs through a third-party and, after seeing its performance, we wanted to focus first on this one for our initial Ryzen 3000 review. We’ve been recommending AMD’s R5 CPUs since the first generation, as Intel’s i5 CPUs have seen struggles lately in frametime consistency and are often close enough to AMD that the versatility, frametime consistency, and close-enough gaming performance have warranted R5 purchases. Today, we’re revisiting with the R5 3600 6-core, 12-thread CPU to look at gaming, production workloads with Premiere, Blender, V-Ray, and more, power consumption, and overclocking.

This week has been the busiest in our careers at GN. The editorial/testing team was two people, working in shifts literally around the clock for 24/7 bench coverage, and the video production team was three people (all credited at article's end, as always). We invested all we could into getting multiple reviews ready for launch day and will stagger publication throughout the day due to YouTube's distribution of content. We don't focus on ad revenue on the site these days and instead focus on our GN Store products and Patreon for revenue, plus ad revenue on YouTube. If you would like to support these colossal efforts, please consider buying one of our new GN Toolkits (custom-made for video card disassembly and system building, using high-quality CRV metals and our own molds) or one of our system building modmats. We also sell t-shirts, mousepads, video card anatomy posters, and more.

Notable changes to our testing methods, other than overhauling literally everything (workstation overhaul, gaming overhaul) a few months ago, would include the following:

  • Windows has all updates applied on all platforms, up to version 1903
  • All BIOS updates and mitigations have been applied
  • For new AMD Ryzen CPU testing, we are using a Gigabyte X570 Master motherboard with BIOS version FC5 installed, per manufacturer recommendations
  • We have changed to GSkill Trident Z RGB memory at 4x8GB and 3200MHz. The 32GB capacity is needed for our Photoshop and Premiere benchmarks, which are memory-intensive and would throttle without the capacity. 

The memory kit is an important change for us. Starting with these new reviews, we are now manually controlling every timing surfaced. That includes secondary and tertiary timings. Previously, we worked to control critical timings, like primary and RFC, but we are now controlling all timings manually. This has tightened our margin of error considerably and has reduced concern of “unfair” timings being auto-applied by the various motherboards we have to use for CPU reviews. “Unfair” in this instance typically means “uncharacteristically bad” as a result of poor tuning by the motherboard maker. By controlling this ourselves, we eliminate this variable. Some of our error margins have been reduced to 0.1FPS AVG as a result, which is fantastic.

Although we're at the end of the hardest testing cycle we've ever had, with many nights spent sleeping in the office (if sleeping at all), we're not even close to the end of it. There'll be follow-up and additional product testing throughout the next week, and that's all because of the joint launches of NVIDIA Super and AMD Navi GPUs, mixed in most importantly with AMD Ryzen 3000-series CPUs. New architectures take the longest to test, predictably, as everything we know has to be rebenchmarked to establish new behaviors in the processors. Anyway, with all of that, there's still news to cover. Show notes are after the embed.

Silicon quality and the so-called silicon lottery are often discussed in the industry, but it’s rare for anyone to have enough sample size to actually demonstrate what those phrases mean in practice. We asked Gigabyte to loan us as many of a single model of video card as they could so that we could demonstrate the frequency variance card-to-card at stock, the variations in overclocking headroom, and actual gaming performance differences from one card to the next. This helps to more definitively strike at the question of how much silicon quality can impact a GPU’s performance, particularly when stock, and also looks at memory overclocking and range of FPS in gaming benchmarks with a highly controlled bench and a ton of test passes per device. Finally, we can see the theory of how much one reviewer’s GPU might vary from another’s when running initial review testing.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge