At EVGA’s headquarters in New Taipei City, Taiwan, GamersNexus received a hands-on overview of the company’s new semi-closed loop liquid nitrogen cooling setup. The setup was created by K|NGP|N and TiN, both of whom work in the Taiwan office, to increase overclocking efficiency and reduce LN2 usage to only necessary quantities. Typically, extreme overclocking involves manual pouring of liquid nitrogen (LN2) from a thermos, which the overclocker can either manually refill from the LN2 tanks or can refill from the exhaust. With this new system, K|NGP|N is able to circulate LN2 based upon software input of desired temperatures, with used LN2 getting pushed through a series of flexible steel tubing and out of an exit manifold. The result yields somewhat reusable LN2 and eliminates the hands-on thermos pouring element of XOCing, allowing overclockers to focus on the result and tuning. Theoretically, you could run off of large LN2 tanks (~180L) at conservative temperatures for weeks on end, then swap tanks and use the collected “runoff.”

On the Intel i7-8086K and Soldering the IHS

By Published June 03, 2018 at 3:09 am

Rumors and speculation around Intel’s Core i7-8086K have begun to grow in large part due to listings on retail websites. The rumored i7-8086K is likely Intel’s way of commemorating their 40th anniversary of their 8086 CPU, a 16-bit processor released on June 8th, 1978.

The i7-8086K (6C/12T) was listed at two different frequencies of 4.0GHz and 5.0GHz. The 5GHz model was listed on Connection.com for $489.83, an increase of $139.94 over the i7-8700K at the time of writing. Despite rumors, GN has been told by multiple sources that the 8086K will not be a soldered CPU, but instead will use TIM.

Prior to the Computex rush, we stopped by Lian Li’s case manufacturing facility in Taiwan, about 30 minutes outside of Taipei. A near-future content piece will show our tour of the case factory (and detail how cases are made), but for today, we’re talking about the products for Computex. Other than pushing RGB to the next level – namely by attaching it to cables – Lian Li also provided us an opportunity to look at an updated O11 Air and Lancool One.

We first saw the Lian Li O11 Air at CES 2018, then reviewed the O11 Dynamic after that, and we’re now approaching launch for the Air variant. The Lian Li O11 Air has gone through spec finalization, with a target of $130 for a 3-fan model, or $150 for a 6-fan model (which is highly competitive, we think). The O11 Dynamic was more focused on water cooling, but the O11 Air goes for large, plastic paneling with grills cut throughout, with otherwise identical tooling to the O11 Dynamic. We think this enclosure is one of the most interesting for the latter half of this year. It’s presently due for “before August, probably,” with a possibility of a July launch.

With B350, B360, Z370, Z390, X370, and Z490, we think it’s time to revisit an old topic answering what a chipset is. This is primarily to establish a point of why we need clarity on what each of these provides – there are a lot of chipsets with similar names, different socket types, and similar features. We’re here to define a chipset today in TLDR fashion, with a later piece to explain the actual chipset differences.

As for what a chipset actually is, this calls back to a GN article from 2012 – though we can do a better job now. The modern chipset is a glorified I/O controller, and can be thought of as the spinal cord of the computer, while the CPU is the disembodied brain. Intel calls its chipset a PCH, or Platform Controller Hub, while AMD just goes with the generic and appropriate term “chipset.” The chipset is the center of I/O for the rest of the motherboard, assigning I/O lanes to devices like SATA, gigabit ethernet, and USB ports.

Cooler Master’s H500M is the 18th addition to our “Cases Named H500” chart. The H500M was shown at CES 2018, and follows-up the initial H500P, the H500P Mesh, and the unrelated H500 and H500i cases from NZXT. This is Cooler Master’s high-end solution, shipping at $200 and including user-swappable glass or mesh front panels, with the mesh panel pre-installed in a default configuration. Today, we’re reviewing the Cooler Master H500M enclosure.

Cooler Master’s H500M officially launches for product availability to consumers in the second week of June, just after Computex ends, and carries an MSRP of $200. For clarity, this is a different product than the H500P Mesh that we previously reviewed, although it does ship with a mesh front by default. The H500M also includes a swappable glass front, and otherwise primarily differentiates itself with additional gloss and ARGB support and controllers.

From the ARGB side, software is still to come, and immediate compatibility includes ASUS motherboards. Cooler Master is working with other vendors on further integration. For our purposes today, we’re more focused on overall build quality and thermal performance; besides, we’ve got Computex and flights to Asia breathing down our necks, so we’ll stick with what we’re good at.

Despite Computex’s imminence, there are still plenty of pre-show announcements and news items to discuss. This week’s anchor item is the “conversation” that Micron has been having with memory suppliers; specifically, China’s Anti-Monopoly Bureau has discussed DRAM pricing with Samsung and Micron, Hynix likely to follow. Connecting the dots isn’t too hard here, but keep in mind that there’s still nothing confirmed with regard to price fixing possibilities.

Separately, AMD’s B450 chipsets were detailed, passive AM4 coolers debuted, and JPR thinks cryptomining is waning, giving way to more affordable video cards for gamers.

Show notes are below the video.

Our colleagues at Hardware Canucks got a whole lot of hate for their video about switching back to Intel, to the point that it really shows the profound ignorance of being a blind fanboy of any product. We decided to run more in-depth tests of the same featureset as Dmitry, primarily for selfish reasons, though, as we’ve also been considering a new render machine build. If HWC’s findings were true, our plans of using an old 6900K would be meaningless in the face of a much cheaper CPU with an IGP.

For this testing, we’re using 32GB of RAM for all configurations (dual-channel for Z/X platforms and quad-channel for X399/X299). We’re also using an EVGA GTX 1080 Ti FTW3 for CUDA acceleration – because rendering without CUDA is torturously slow and we’re testing for real-world conditions.

Adobe recently added IGP-enabled acceleration to its Premiere video editing and creation software, which seems to leverage a component that is often irrelevant in our line of work – the on-die graphics processor. This move could potentially invalidate the rendering leverage provided by the likes of a 7980XE or 1950X, saving money for anyone who doesn’t need the additional threads for other types of work (like synchronous rendering or non-Premiere workstation tasks, e.g. Blender). Today, we’re benchmarking Adobe Premiere’s rendering speed on an Intel i7-8700X, AMD R7 2700X, Intel i9-7980XE, and AMD Threadripper 1950X.

NZXT opened their revamped H series of cases a few months ago with the H200i, H400i, and H700i, which are all mostly differently sized versions of the same case. The H500/H500i is a brand new addition--no, not that H500--and NZXT has made some tweaks since the first batch. The NZXT H500 is an S340 replacement, priced at $70 MSRP for the H500 and $100 for the H500i (which includes a “smart” device and RGB LED strips).

We liked the H700i overall, but we had some criticisms, mostly about the “i” representing the included smart device. NZXT told us they listened, so let’s start by checking off those earlier complaints.

Hardware news always slows slightly before Computex, but the industry still seems to be operating at full bore. If you're not already tuned-in, be sure to pay attention during June 4th to June 11th (or thereabouts) for major news from all aspects of the industry. Computex will be in full swing then, and there's always some straggler (and some early) coverage that's worth checking. We'll be at the show for its duration, plus some time for a short trip to Japan.

This week's hardware news recap can be found in video form below, or if you prefer written articles, we have the show notes below that. The anchor item for the week is Sony's PlayStation 5 and its potential usage of Zen architecture CPUs.

It’s been a long time since we’ve reviewed any mini-ITX cases. The standard system that we use for testing ATX cases includes a full-sized GPU, PSU, and CPU cooler, which may or may not fit in small form factor cases, as well as an ATX motherboard that definitely won’t. Even if our components were small enough to fit, ATX and mini-ITX enclosures are like apples and oranges--SFF cases often have specific uses and different priorities than standard mid-towers.

Enough time has passed that it’s worth it to put together a separate ITX benchmarking system with a separate table of results to compare. To start off our database, we’re doing a roundup of three not-so-new cases from our backlog: the Thermaltake V1, Silverstone SG13, and the Cryorig Taku. This will start our charts, and we intend to work toward expanding those charts with the full suite of cases, as usual, including several upcoming products at Computex.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge