Ask GN 69: Mining on Radeon SSG? Ampere, GDDR6, & Boost

By Published February 10, 2018 at 11:14 pm

Our latest Ask GN episode talks methodology and benchmarking challenges with GPU boost, GDDR6 availability, "mining" on AMD's Radeon SSG, and more. This is also our first episode that comes with a new accompaniment, released in the form of a Patreon-only Ask GN. The separate video is  visible to Patreon backers, and answers a couple extra questions that were submitted via the Patreon Discord.

As usual, timestamps are provided below the embedded video. The major focus is on some quick GDDR6 news, then some discussion on GPU benchmarking approaches.

Find out more below:

This hardware news round-up covers the past week in PC hardware, including information on AMD's Ryzen+Vega amalgam, CPU "shortage" sensationalism, Newegg commission changes, and more. As usual, our HW News series is written as a video, but we publish show notes alongside the video. We'll leave those below the embed.

The big news for the week was AMD's 2400G & 2200G APUs, which are due out on Monday of next week. The higher-end APU will be priced around $170, and will primarily compete with low-end CPU+GPU combinations (e.g. GT 1030 and low-end R3). Of course, the APUs also carve an interesting niche in a market with limited dGPU supply. Strategically, this is a good launch window for AMD APUs.

We’re revisiting one of the best ~200mm-ish fans that existed: The SilverStone Air Penetrator 180, or AP181, that was found in the chart-topping Raven02 case that we once held in high regard. We dug these fans out of our old Raven, still hanging around post-testing from years ago, and threw them into a test bench versus the Noctua 200mm and Cooler Master 200mm RGB fans (the latter coming from the H500P case).

These three fans, two of which are advertised as 200mm, all have different mounting holes. This is part of the reason that 200mm fans faded from prominence (the other being replacing mesh side panels with a sheet of glass), as companies were all fighting over a non-standardized fan size. Generally speaking, buying a case with 200mm fans did not – and still does not – guarantee that other 200mm fans will work in that case. The screw hole spacing is different, the fan size could be different, and there were about 4 types of 200mm-ish fans from the time: 180mm, 200mm, 220mm, and 230mm.

That’s a large part of the vanishing act of the 200mm fans, although a recent revival by Cooler Master has resurrected some interest in them. It’s almost like a fashion trend: All the manufacturers saw at Computex that 200mm fans were “in” again, and immediately, we started seeing CES 2018 cases making a 200mm push.

Newegg today revoked its affiliate commission for video cards, which the company's sub-affiliate networks declare to be a change pursuant to "Bitcoin's unexpected popularity." This statement, of course, is comprised primarily of a misunderstanding or misattribution of the market (or bullshit, in other words), although it does consist of some truth. By "Bitcoin," we must first assume that the company really means "cryptocurrency," seeing as Bitcoin is functionally unminable on GPUs. Making this assumption still does not account for the GPU price increase, though; the price increase, as we've discussed on numerous occasions, is mostly resultant of GPU memory prices and GPU memory availability moving in inversely proportional directions. In recent interviews with manufacturers, we learned that 8GB of GDDR5 has increased in manufacturing cost, and has increased BOM, by $20-$30. From what we understand, GDDR5 price movements are typically on a scale of +/- $5, but the $20-$30 hike necessitated some vendors to officially raise GPU MSRP (not just third-party retail price, but actual MSRP).

FFXV Hyperthreading & SMT On vs. Off Benchmarks

By Published February 07, 2018 at 5:28 pm

Despite having just called the FFXV benchmark “useless” and “misleading,” we did still have some data left over that we wanted to publish before moving on. We were in the middle of benchmarking all of our CPUs when discovering the game’s two separate culling and LOD issues (which Square Enix has addressed and is fixing), and ended up stopping all tests upon that discovery. That said, we still had some interesting data collected on SMT and Hyperthreading, and we wanted to publish that before shelving the game for launch.

We started testing with the R7 1700 and i7-8700K a few days ago, looking at numThreads=X settings in command line to search for performance deltas. Preliminary testing revealed that these settings provided performance uplift to a point of 8 threads, beyond or under which we observed diminishing returns.

We recently published a deep-dive that discovered a lack of lower LOD scaling to HairWorks effects in FFXV, an issue we attributed to Square Enix and flagged to nVidia. We further noted that it wasn’t just GameWorks effects, but entire models were being drawn when miles away from the player. Following the report, Square Enix’s official FFXV twitter account (@FFXVEN) has released a series of tweets about the issue, noting: “A Level of Detail (LOD) issue has been discovered that affects the benchmark scores. The benchmark also suffers from stuttering; both of the issues will be addressed in the shipping game.”

Samsung Confirms ASIC Miner Production

By Published February 05, 2018 at 5:02 pm

Samsung recently officially confirmed that they are producing ASICs (Application-Specific Integrated Circuits) intended for cryptocurrency mining, being sold to unnamed clients for ASIC mining machines. These machines are different from GPU miners, and do not meaningfully affect desktop GPU supply.

As the name implies, ASICs are chips designed for a single purpose. There’s nothing unusual about producing ASICs, but mining-specific ones have been the domain of TSMC until now, primarily with client Bitmain. Samsung won’t be doing the mining themselves, just supplying the hardware: TechPowerUp suggests the order was placed by “Chinese clients” which were mentioned in a recent earnings report. Our understanding is that the varieties of cryptocurrency which ASICs can effectively mine are ones that are now beyond the capabilities of home mining operations, like Bitcoin, so they’re used by massive currency farms. SHA-256 algorithms are best mined with ASIC miners.

Update: Square Enix is aware of this issue, has acknowledged its existence, and is working on an update for launch.

Although we don't believe this to be intentional, the Final Fantasy XV benchmark is among the most misleading we’ve encountered in recent history. This is likely a result of restrictive development timelines and a resistance to delaying product launch and, ultimately, that developers see this as "just" a benchmark. That said, the benchmark is what's used for folks to get an early idea of how their graphics cards will perform in the game. From what we've seen, that's not accurate to reality. Not only does the benchmark lack technology shown in tech demonstrations (we hope these will be added later, like strand deformation), but it is still taking performance hits for graphics settings that fail to materialize as visual fidelity improvements. Much of this stems from GameWorks settings, so we've been in contact with nVidia over these findings for the past few days.

As we discovered after hours of testing the utility, the FFXV benchmark is disingenuous in its execution, rendering load-intensive objects outside the camera frustum and resulting in a lower reported performance metric. We accessed the hexadecimal graphics settings for manual GameWorks setting tuning, made easier by exposing .INI files via a DLL, then later entered noclip mode to dig into some performance anomalies. On our own, we’d discovered that HairWorks toggling (on/off) had performance impact in areas where no hair existed. The only reason this would happen, aside from anomalous bugs or improper use of HairWorks (also likely, and not mutually exclusive), would be if the single hair-endowed creature in the benchmark were drawn at all times.

The benchmark is rendering creatures that use HairWorks even when they’re miles away from the character and the camera. Again, this was made evident while running benchmarks in a zone with no hairworks whatsoever – zero, none – at which point we realized, by accessing the game’s settings files, that disabling HairWorks would still improve performance even when no hairworks objects were on screen. Validation is easy, too: Testing the custom graphics settings file by toggling each setting, we're able to (1) individually confirm when Flow is disabled (the fire effect changes), (2) when Turf is disabled (grass strands become textures or, potentially, particle meshes), (3) when Terrain is enabled (shows tessellation of the ground at the demo start' terrain is pushed down and deformed, while protrusions are pulled up), and (3) when HairWorks is disabled (buffalo hair becomes a planar alpha texture). We're also able to confirm, by testing the default "High," "Standard," and "Low" settings, that the game's default GameWorks configuration is set to the following (High settings):

  • VXAO: Off
  • Shadow libs: Off
  • Flow: On
  • HairWorks: On
  • TerrainTessellation: On
  • Turf: On

Benchmarking custom settings matching the above results in identical performance to the benchmark launcher window, validating that these are the stock settings. We must use the custom settings approach, as going between Medium and High offers no settings customization, and also changes multiple settings simultaneously. To isolate whether a performance change is from GameWorks versus view distance and other settings, we must individually test each GameWorks setting from a baseline configuration of "High." 

Final Fantasy XV is shaping up to be intensely demanding of GPU hardware, with greater deltas developing between nVidia & AMD devices at High settings than Medium settings. The implication is that, although other graphics settings (LOD, draw distance) change between High and Medium, the most significant change is that of GameWorks options. HairWorks, Shadow libraries, and heavy ground tessellation are all toggled on with High and off with Medium. The ground tessellation is one of the most impactful to performance, particularly on AMD hardware; that said, although nVidia fares better, the 10-series GPUs still struggle with frametime consistency when running all the GameWorks options. This is something we’re investigating further, as we’ve (since writing this benchmark) discovered how to toggle graphics settings individually, something natively disabled in the FFXV benchmark. Stay tuned for that content.

In the meantime, we still have some unique GPU benchmarks and technical graphics analysis for you. One of our value adds is 1440p benchmarks, which are, for some inexplicable reason, disabled in the native FFXV benchmark client. We automated and scripted our benchmarks, enabling us to run tests at alternative resolutions. Another value-add is that we’re controlling our benchmarks; although it is admirable and interesting that Square Enix is collecting and aggregating user benchmark data, that data is also poisoned. The card hierarchy makes little sense at times, and that’s because users run benchmarks with any manner of variables – none of which are accounted for (or even publicly logged) in the FFXV benchmark utility.

Separately, we also confirmed with Square Enix that the graphics settings are the same for all default resolutions, something that we had previously questioned.

This content piece will explore the performance anomalies and command line options for the Final Fantasy XV benchmark, with later pieces going detailed on CPU and GPU benchmarks. Prior to committing to massive GPU and CPU benchmarks, we always pretest the game to understand its performance behaviors and scaling across competing devices. For FFXV, we’ve already detailed FPS impact of benchmark duration, impact of graphics settings and resolution on scaling, we’ve used command line to automate and custom configure benchmarks, and we’ve discovered poor frametime performance under certain benchmarking conditions.

We started out by testing for run-to-run variance, which would be used to help locate outliers and determine how many test passes we need to conduct per device. In this frametime plot, you can see that the first test pass, illustrated on a GTX 1070 with the settings in the chart, exhibits significantly more volatile frametimes. The frame-to-frame interval occasionally slams into a wall during the first 6-minute test pass, causing noticeable, visible stutters in gameplay.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge