Intel’s i3/i5/i7 and AMD’s R5/R7 CPUs are the big competitors in the PC gaming world, but they aren’t the only options out there: AMD released cheap but capable Athlon X4s in 2016, and in January of this year Intel released the 2C/4T Pentium G4560 ($70), a 14nm Kaby Lake processor for ~$64~$70. We didn’t fully review the older and (briefly) popular Pentium G3258, but it has showed up in Ask GN and individual benchmarks, so we were excited to do comprehensive testing on this modern iteration.

The G4560 lacks the feature that made the G3258 so popular: the ability to overclock. Buying a dirt-cheap dual-core processor and cranking the frequency up was enough for decent performance in limited-thread games, although the G3258 often suffers from extreme stuttering in more modern titles. The limitations lead us to believe that Intel doesn’t want to compete with its own more expensive 2C/4T unlocked i3 and locked i3-7100 ($120) & 7300 ($150).

Ask GN returns after a hiatus due to nonstop video card and CPU reviews, re-opening coverage with a discussion on temperature impact on components, noise optimization for GPUs, CLC mounting methods, and a bit more.

Oh, and we got more pucks from NZXT – but at least this one’s blue.

For timestamps, continue on. The video is embedded below:

The EVGA GTX 1080 Ti FTW3 is the company’s attempt at a 3-fan cooler, entering EVGA into the three-fan ranks alongside ASUS, Gigabyte, and MSI. The difference with EVGA’s card, though, is that it’s a two-slot design; board partners have gone with a “bigger is better” mentality for the 1080 Ti, and it’s not necessarily advantageous. Sure, there are benefits – taller cards mean taller fans, like on the Gaming X, which results in slower rotation of fans without sacrificing volume of air moved. It follows then that taller fans on taller cards could be profiled to run quieter, without necessarily sacrificing thermal performance of the GPU, VRM, and VRAM components.

But we’re testing today to see how all that plays out in reality. In our EVGA GTX 1080 Ti FTW3 review, we benchmark the card vs. EVGA’s own SC2, MSI’s 1080 Ti Gaming X, Gigabyte’s Xtreme Aorus, and the Founders Edition card. Each of these also has an individual review posted, if you’re looking for break-outs on any one device. See the following links for those (listed in order of publication):

It’s Not About Gaming Performance

Having reviewed this many cards in the past few weeks, it should be apparent to everyone that same-GPU cards aren’t really differentiated by gaming performance. Gaming performance is going to be within a few percentage points of all devices, no matter what, because they’re ultimately governed by the GPU. A manufacturer can throw the world’s best PCB, VRM, and cooler together, and it’s still going to hit a Pascal wall of voltage and power budget. Further, chip quality dictates performance in greater ways than PCB or VRM will. We have duplicates of most of our cards, and they can perform 1-3% apart from one another, depending on which boosts higher out-of-box.

For anyone who missed the news last week, Final Fantasy XIV: Stormblood has a freshly released benchmarking tool included in the download.

In anticipation of the official release of Final Fantasy XIV: Stormblood, Square Enix has revealed a benchmark tool, and a new trailer – itself a recording of the benchmark.

Final Fantasy XIV has never exactly been a demanding title for PC hardware; however, the release of the Stormblood expansion marks the end of PS3 support, which has effectively served as the lowest common denominator while developing the MMORPG across multiple platforms. With the PS3’s hardware limitations no longer a constraint—plus an upgraded North American Data Center—Square Enix has vowed both graphical and functional advancements (think inventory space) over both A Realm Reborn and Heavensward.

We came away from our revisit of the once-king Sandy Bridge 2600K and 2500K CPUs impressed by the staying power of products that came out in Q1 2011, considering Intel’s unimpressive gains since that time.

At the time of Sandy Bridge’s release, AMD’s flagship CPUs were 45nm K10-based Phenom IIs, designed to compete in price/performance with the 45nm Lynnfield (Nehalem i5) quad cores. Later that year, AMD’s underwhelming Bulldozer architecture would launch and inevitably replace the Phenom line. Given that we’ve already looked at Intel’s 1Q11 offerings, we decided to revisit AMD’s Phenom II CPUs in 2017, including the Phenom II X6 1090T (Black Edition) and Phenom II X6 1055T. These benchmarks look at AMD Phenom II performance in gaming and production workloads for the modern era, including comparisons to the equal-aged Sandy Bridge CPUs, modern Ryzen 5 & 7 CPUs, and modern Intel CPUs.

Our Titan Xp Hybrid mod is done, soon to be shipped back to its owner in its new condition. Liquid cooling mods in the past have served as a means to better understand where a GPU could perform given a good cooler, and are often conducted on cards with reference coolers. The Titan Xp won’t have AIB partner cooler models, and so building a Hybrid card gives us a glimpse into what could have been.

It’s also not a hard mod to do – an hour tops, maybe a bit more for those who are more hesitant – and costs $100 for the Hybrid kit. Against the $1200 purchase for the card, that’s not a tall order.

In today’s benchmarks and conclusion of the Titan Xp Hybrid mod, we’ll cover thermals and noise levels extensively, overclocking, and throw in some gaming benchmarks.

 

GN resident overclocker ‘Buildzoid’ just finished digging through the details of EVGA’s GTX 1080 Ti FTW3 ($780) video card, noting that the card is one of the most overbuilt 1080 Tis that we’ve seen yet. The FTW3 over-engineers its VRM and power delivery solution and cooling solution equally, the latter of which we detailed in our 1080 Ti FTW3 tear-down a few days ago.

Much of this is to do with the FTW VRM discussion of last year, something we closed the book on in November. Our conclusion was that the cards were operating within thermal spec, but that there were supply-side QA issues that happened to fall on EVGA. The engineering team decided to design for this by over-engineering every aspect of the VRM on the new ICX and 1080 Ti cards, something we see in today’s PCB analysis:

Some of this week's best deals are not on sale for a special price, but are just well-spec’d hardware at a viable price. This week we have a pair of lower watt power supplies from EVGA and SeaSonic on sale at Newegg, along with the GTX 1070 Mini from Zotac with a small price reduction, making it one of the most affordable GTX 1070s on the market. We also managed to find a Crucial M.2 SSD slightly discounted, and the Thermaltake Contac Silent CPU cooler.

Our GTX 1080 Ti SC2 review was met with several comments (on YouTube, at least) asking where the FTW3 coverage was. Turns out, EVGA didn’t even have those cards until two days ago, and we had ours overnighted the same day. We’ve got initial testing under way, but wanted to share the tear-down process early to spoil some of the board. This tear-down of the EVGA GTX 1080 Ti FTW3 ($780) exposes the PCB and VRM design, fan header placement, and cooler design for the FTW3. We’re working with GN resident overclocker ‘Buildzoid’ for a full PCB + VRM analysis in the coming days, but have preliminary information at the ready.

EVGA’s 1080 Ti FTW3 is one of the most overbuilt PCBs we’ve seen in recent history. As stated in our SC2 review, the EVGA team has gone absolutely mental with thermal pad placement (following last year’s incident), and that’s carried over to the FTW3. But it’s more than just thermal pads (on literally every component, even those that have no business being cooled), it’s also the VRM design. This is a 10+2 phase card with doubling and dual FETs all across the board, using Alpha Omega Semiconductor E6930s for all the FETs. We’ll save the rest of the PCB + VRM discussion (including amperage and thermal capabilities) for Buildzoid’s deep-dive, which we highly encourage watching. That’ll go live within a few days.

We just posted our second part of the Titan Xp Hybrid mod, detailing the build-up process for adding CLCs to the Titan Xp. The process is identical to the one we detailed for the GTX 1080 Ti FE card, since the PCB is effectively equal between the two devices.

For this build, we added thermocouples to the VRAM and VRM components to try and determine if Hybrid mods help or hurt VRAM temperatures (and, with that part of testing done, we have some interesting results). Final testing and benchmarking is being run now, with plans to publish by Monday.

In the meantime, check out part 2 below:

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge