Hardware

We’re still in China for our factory and lab tours, but we managed to coordinate with home base to get enough testing on the GTX 1660 done that a review became possible. Patrick ran the tests this time, then we just put the charts and script together from Dongguan, China.

This is a partner launch, so no NVIDIA direct sampling was done and, to our knowledge, no Founders Edition board will exist. Reference PCBs will exist, as always, but partners have control over most of the cooler design for this launch.

Our review will look at the EVGA GTX 1660 dual-fan model, which has an MSRP of $250 and lands $30 cheaper than the baseline GTX 1660 Ti pricing. The cheapest GTX 1660s will sell for about $220, but our $250 unit today has a higher power target allowance for overclocking and a better cooler. The higher power target is the most interesting, as overclocking performance can stretch upwards toward a GTX 1660 Ti at the $280 price-point.

We’ll get straight to the review today. Our focus will be on games, with some additional thermal and power tests toward the end. Again, as a reminder, we’re doing this remotely, so we don’t have as many non-gaming charts as normally, but we still have a complete review.

The Corsair Crystal 680X is the newer, larger sibling to the 280X, a micro-ATX case that we reviewed back in June. The similarity in appearance is obvious, but Corsair has used the past year to make many changes, and the result is something more than just a scaled-up 280X and perhaps closer to a Lian Li O11 Dynamic.

First is the door, which is a step up from the old version. Instead of four thumbscrews, the panel is set on hinges and held shut with a magnet. This is a better-looking and better-functioning option. It’d be nice to have a way to lock the door in place even more securely during transportation, but that’s a minor issue and systems of this size rarely move.

Removing the front panel is a more elaborate process than usual, but it’s also unnecessary. The filter and fans are both mounted on a removable tray, and everything else is easily accessible through the side of the case. Fan trays (or radiator brackets, or whatever you want to call them) are always an improvement. If for some reason the panel does need to be removed, it involves removing three screws from inside the case, popping the plastic section off, and removing a further four screws from outside. The plastic half is held on by metal clips that function the same way as the plastic clips in the 280X, but are easier to release. Despite appearances, the glass pane is still not intended to be slid out, although it could be freed from its frame by removing many more screws.

Today, we’re reviewing the GTX 1660 Ti, whose name is going to trip us up for the entirety of its existence. The GTX 1660 Ti is NVIDIA’s mid-step between Pascal and Turing, keeping most of the Turing architectural changes to the SMs and memory subsystem, but dropping the official RTX support and RT cores in favor of a lower price. The EVGA GTX 1660 Ti XC that we’re reviewing today should have a list price of $280, sticking it between the $350 baseline of the RTX 2060 and the rough $200 price-point of modern 1060s, although sometimes that’s higher. For further reference, Vega 56 should now sell closer to $280, with the RX 590 still around the $260 range.

This is a review of a revision of the Define S2, a case which we already dismissed as nearly identical to the Define R6 (a case we liked and found of high build quality), making this the third review we’ve published of the same(-ish) enclosure. That description may not sound promising, but the newest case’s name does: the Meshify S2 establishes a trend of Fractal “meshifying” cases by replacing solid front panels with better-ventilated ones, as they did previously with the Meshify C (another case we liked) and Meshify C Mini.

Our AMD Radeon VII review is one of our most in-depth in a while. The new $700 AMD flagship is a repurposed Instinct card, down-costed for gaming and some productivity tasks and positioned to battle the RTX 2080 head-to-head. In today’s benchmarks, we’ll look uniquely at Radeon VII cooler mounting pressure, graphite thermal pad versus paste performance, gaming benchmarks, overclocking, noise, power consumption, Luxmark OpenCL performance, and more.

We already took apart AMD’s Radeon VII card, remarking on its interesting Hitachi HM03 graphite thermal pad and vapor chamber. We also analyzed its VRM and PCB, showing impressive build quality from AMD. These are only part of the story, though – the more important aspect is the silicon, which we’re looking at today. At $700, Radeon VII is positioned against the RTX 2080 and now-discontinued GTX 1080 Ti (the two tested identically). Radeon VII has some interesting use cases in “content creation” (or Adobe Premiere, mostly) where GPU memory becomes a limiting factor. Due to time constraints following significant driver-related setbacks in testing, we will be revisiting the card with a heavier focus on these “content creator” tests. For now, we are focusing primarily on the following:

The Intel Xeon W-3175X CPU is a 28-core, fully unlocked CPU capable of overclocking, a rarity among Xeon parts. The CPU’s final price ended up at $3000, with motherboards TBD. As of launch day – that’s today – the CPU and motherboards will be going out to system integrator partners first, with DIY channels to follow at a yet-to-be-determined date. This makes reviewing the 3175X difficult, seeing as we don’t yet know pricing of the rest of the parts in the ecosystem (like the X599 motherboards), and seeing as availability will be scarce for the DIY market. Still, the 3175X is first a production CPU and second an enthusiast CPU, so we set forth with overclocking, Adobe Premiere renders, Blender tests, Photoshop benchmarking, gaming, and power consumption tests.

In a post-Linum TI world, it’s likely that a lot of you look at system integrators a little differently – or, more likely, exactly the same. After we began our Walmart system review, we put in a last-minute, rushed order for an iBUYPOWER RDY system with significantly better parts than what we could get in the Walmart build. This was before Linus had begun his series, too, and so all we knew was that the parts listing included a 9700K instead of an 8700, clearly an improvement, and an RTX 2080 instead of a GTX 1080 Ti, and iBUYPOWER did this at a lower price. The question was whether or not the assembly was any good and if any other mistakes were made along the way.

Before starting on this one, we need a trip down memory lane: We had just ordered the Walmart system, originally meant to be an i7-8700 non-K CPU with GTX 1080 Ti, and had paid over $2000 to get it. Of course, that fateful order ended up being accidentally shipped with an 8700 with a GTX 1070 and was actually the $1500 SKU, but close enough. The motherboard was an H310 platform that runs a slower DMI and only one DIMM per channel, the case had literally 3-4mm of space between the glass and the front panel, and the USB3 cable was held in with glue. Off to a good start.

Today we’re reviewing the RTX 2060, with additional tests on if an RTX 2060 has enough performance to really run games with ray-tracing – basically Battlefield, at this point – on the TU106 GPU. We have a separate tear-down going live showing the even more insane cooler assembly of the RTX 2060, besting the previous complexity of the RTX 2080 Ti, but today’s focus will be on performance in gaming, thermals, RTX performance, power consumption, and acoustics of the Founders Edition cooler.

The RTX 2060 Founders Edition card is priced at $350 and, unlike previous FE launches in this generation, it is also the price floor. Cards will start at $350 – no more special FE pricing – and scale based upon partner cost. We will primarily be judging price-to-performance based upon the $350 point, so more expensive cards would need to be judged independently.

Our content outline for this RTX 2060 review looks like this:

  • Games: DX12, DX11
  • RTX in BF V
  • Thermals
  • Noise
  • Power

We’re putting more effort into the written conclusion for this one than typically, so be sure to check that as well. Note that we have a separate video upload on the YouTube channel for a tear-down of the card. The PCB, for the record, is an RTX 2070 FE PCB. Same thing.

The XFX RX 590 Fatboy is a card we tore-down a few months ago, whereupon we complained about its thermal solution and noted inefficiencies in the design. These proved deficient in today’s testing, as expected, but the silicon itself – AMD’s GPU – remained a bit of a variable for us. The RX 590 GPU, ignoring XFX and its component of the review (momentarily), is potentially a stronger argument between the GTX 1060 and GTX 1070. It’s a pre-pre-overclocked RX 480 – or a pre-overclocked RX 580 – and, to AMD’s credit, it has pushed this silicon about as far is it can go.

Today, we’re benchmarking the RX 590 (the “Fatboy” model, specifically) against the GTX 1060, RX 580 overclocked, GTX 1070, and more.

We recently reviewed (and weren’t impressed by) the Thermaltake Level 20 MT, but Thermaltake is nothing if not prolific, and there’s always a new enclosure to try. The A500 TG was released back in October under the full name “Thermaltake A500 Aluminum Tempered Glass Edition Mid-Tower Chassis,” and enters the lab today for a full thermal, acoustic, and build quality review.

Thermaltake’s A500 case primarily touts aluminum, glass, and trend-advancing features without necessarily introducing new ideas. It’s OK for a case to advance features rather than invent them, but it really must make advancements at the $250 price-point of the A500.

Page 1 of 14

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge