Hardware

This is something we haven’t seen before. NVidia has taken a relatively successful card, the GT 1030, and has implanted DDR4 in place of GDDR5. It’s actually getting system memory on it, which is a tremendous downgrade. The memory bandwidth reduction is several-fold, dropping from 48GB/s to about 16GB/s with DDR4, but the part that’s truly wrong is that they used the same product name.

The GT 1030 has always been an interesting product, and that’s only true because of the mining boom and GPU scarcity issues of earlier this year. Typically, the GT 1030 – or similarly ultra-low-end cards – would not get our recommendation, as a GTX 1050 or RX 550 would make more sense and be close in price. Earlier this year, even GTX 1050s and RX 550s had evaporated, leaving only overpriced GT 1030 GDDR5 cards (that we were somewhat OK with recommending). Fortunately, performance was decent. Was. Before the DDR4 surgery.

It’s time to benchmark the GT 1030 versus the GT 1030 Bad Edition, which ships with DDR4 instead of GDDR5, but has the same name as the original product. In a previous rant, we railed against these choices because it misleads consumers – whether intentionally or unintentionally – into purchasing a product that doesn’t reflect the benchmarks. If someone looks up GT 1030 benchmarks, they’ll find our GDDR5 version tests, and those results are wildly different from the similarly priced GT 1030 DDR4 card’s performance. On average, particularly on Newegg, there is about a $10 difference between the two cards.

The GT 1030 with DDR4 is one of the most egregious missteps we’ve seen when it comes to product marketing. NVidia has made a lot of great products in the past year – and we’ve even recommended the GT 1030 GDDR5 card in some instances, which is rare for us – but the DDR4 version under the same name was a mistake.

SilverStone’s RVZ03 isn’t new, but after years of ATX case reviews we have quite a backlog of promising small form factor cases. The RVZ03 is part of the Raven line, a loosely related group of “extreme enthusiasts chassis” that could also be called “the ones that have a V-shape on them.” We recently revisited the RV02, one of the best-performing full size cases we’ve reviewed.

It’s a thin, console-like enclosure, typically shown standing vertically, but also capable of being laid on its side Taku-style. The ubiquitous Vs on the front are clear plastic backlit with RGB LEDs hooked up to a controller; the controller can accept input from a standard 4-pin RGB header and includes adapters to control normal LED strips as well.

The review embargo on Corsair’s new Crystal 280X micro-ATX case lifted during Computex, possibly the busiest week of the year--but since we’ve just started testing small form factor cases, we chose to push back the review another week or two.

The 280X is fairly large to call itself small form factor, and that can be an unfair advantage when comparing performance against truly small mini-ITX cases like the SG13. One justification is that (unlike the Cryorig Taku), the 280X uses its extra room to supports full-size components except for the motherboard, which must be either micro ATX or mini ITX.

Getting this cooler working was a bit of a struggle. It was some parts human error, on our end, and some parts mechanical error. This thing is a $100 cooler from Aliexpress, and it uses both open loop liquid cooling for a few of its pipes while also using traditional air cooling and heatpipes. We had some small (read: significant) leaks during our livestream, and after the stream, we discovered that the screws securing the inlet manifold to the tower were loose, causing significant leakage as the water filled the pipes. After fixing this, we were finally able to fully test this truly unique hybrid water-air cooler.

The cooler is an interesting one. We’re planning a separate tear-down of the cooler to see what’s going on under the coldplate – likely not much – but for now, we’ve done exhaustive thermal testing under various conditions. Some tests were just straight pump/reservoir hookups to the cooler, while others included a 360mm radiator and 3 high-end fans. The W120 has been sitting on shelves for a while, clearly, as it was first shown at Computex 2011, and the box we received had dried thermal paste and yellowing on the product box. We still wanted to test it, as the unique combination of G-1/4” fittings, open loop support through 4 water pipes, and traditional air cooling meant the cooler could perform peculiarly. You’d assume that there’s a reason this isn’t really done, but we still wanted to find out why.

Cooler Master’s H500M is the 18th addition to our “Cases Named H500” chart. The H500M was shown at CES 2018, and follows-up the initial H500P, the H500P Mesh, and the unrelated H500 and H500i cases from NZXT. This is Cooler Master’s high-end solution, shipping at $200 and including user-swappable glass or mesh front panels, with the mesh panel pre-installed in a default configuration. Today, we’re reviewing the Cooler Master H500M enclosure.

Cooler Master’s H500M officially launches for product availability to consumers in the second week of June, just after Computex ends, and carries an MSRP of $200. For clarity, this is a different product than the H500P Mesh that we previously reviewed, although it does ship with a mesh front by default. The H500M also includes a swappable glass front, and otherwise primarily differentiates itself with additional gloss and ARGB support and controllers.

From the ARGB side, software is still to come, and immediate compatibility includes ASUS motherboards. Cooler Master is working with other vendors on further integration. For our purposes today, we’re more focused on overall build quality and thermal performance; besides, we’ve got Computex and flights to Asia breathing down our necks, so we’ll stick with what we’re good at.

NZXT opened their revamped H series of cases a few months ago with the H200i, H400i, and H700i, which are all mostly differently sized versions of the same case. The H500/H500i is a brand new addition--no, not that H500--and NZXT has made some tweaks since the first batch. The NZXT H500 is an S340 replacement, priced at $70 MSRP for the H500 and $100 for the H500i (which includes a “smart” device and RGB LED strips).

We liked the H700i overall, but we had some criticisms, mostly about the “i” representing the included smart device. NZXT told us they listened, so let’s start by checking off those earlier complaints.

It’s been a long time since we’ve reviewed any mini-ITX cases. The standard system that we use for testing ATX cases includes a full-sized GPU, PSU, and CPU cooler, which may or may not fit in small form factor cases, as well as an ATX motherboard that definitely won’t. Even if our components were small enough to fit, ATX and mini-ITX enclosures are like apples and oranges--SFF cases often have specific uses and different priorities than standard mid-towers.

Enough time has passed that it’s worth it to put together a separate ITX benchmarking system with a separate table of results to compare. To start off our database, we’re doing a roundup of three not-so-new cases from our backlog: the Thermaltake V1, Silverstone SG13, and the Cryorig Taku. This will start our charts, and we intend to work toward expanding those charts with the full suite of cases, as usual, including several upcoming products at Computex.

The NZXT M22 is one of the stranger liquid coolers made by a relatively large liquid cooling manufacturer. NZXT dumped Asetek for this 120mm closed-loop cooler, instead opting for a pump-in-radiator design that circumvents Asetek patents and permits sale in the US. The M22 is a complement to NZXT’s Asetek products at the high-end, but comes in at $100 and 120mm. That’s a bit high for a 120mm liquid cooler, particularly considering that competition from EVGA’s CLC 120 comes in at $70 and is made by the familiar Asetek, but its performance may make up for the price differential. Today, we’ll find out.

Primary competition in this price class includes NZXT’s own Kraken X42, a 140mm Asetek-made design, and 240mm units from the same price class. NZXT’s M22 ships for $100 MSRP, and at that price, it’s competing (strictly in price) with the likes of the EVGA CLC 240, the Corsair H100i V2, and NZXT’s units. If we look strictly at size class, the EVGA CLC 120 competes most directly at $70. Despite its low price, that’s still a modern Asetek unit; it uses the same pump as any higher-end cooler, just has fewer fans. It’s not cheap garbage – it’s not something we recommend, either, but it’s not going to fall apart.

It’s a fierce market at $100. Even air coolers would reach equivalence or superior performance than NZXT’s M22. They’re going for one demographic, and one only: Has RGB LEDs and is exactly 120mm. That’s it. That’s the demo. If you’re not that, it’s really not worth the time or money to grab the M22.

To NZXT’s credit, the LED integration is the best-in-class for a 120mm liquid cooler. It’s also expensive, so that makes for an odd combination of size and price.

Intel’s Pentium G line has largely managed to hold-on as one of the better buys of the past few years. There was a brief period where the G3258 made a lot of sense for ultra budget-minded buyers, then the G4560 recently – particularly at the actually good price of $60 – and now Intel has its Pentium G 5000 series. The G4560 had stunted growth from limited stock and steep hikes on MSRP, forcing people to consider i3s instead, up until R3s shipped. The 4560 remained a good buy as it dropped towards $60, fully capable of gaming on the cheap, but it is now being replaced by the units we’re reviewing this month.

We’re starting with the Intel Pentium G5600, which is the most expensive of the new Pentium Gold line. At $95, it’s about $40 more than the G4560, $10 more than the G5500, and $20 more than the G5400. The R3 1300X is about $105, and the R3 1200 is about $95.

NZXT’s Kraken X72 closed-loop liquid cooler is another in the XX2 series, following the 280mm X62 that we previously reviewed. The X72 is a 360mm cooler, putting it in more direct competition with the Corsair H150i Pro (the first to feature a 6th-gen pump) and Fractal S36, and indirect competition – in performance only – with the EVGA CLC 280.

NZXT’s X72 costs $200, making it one of the most expensive CLCs on the market. The Floe 360 lands at around $184, the EK Phoenix 360 – a semi-open solution – is the only one that lands significantly higher. The X72 still uses the same pump design as when we tore-down the X42, running Asetek’s 5th Gen pump and a custom, NZXT-designed PCB for RGB lighting effects. Functionally, 5th Gen has proven to be marginally superior – technically – to its 6th Gen for outright cooling performance. We’re talking nearly margins of error. The newest generation is presently only used on Corsair’s H150i and H115i Pro products, as Corsair largely dictated what went into the 6th generation. Major differences are made-up by the metal impeller, similar to the one used by Dynatron in old Antec Kuhler products, rather than a 3-prong plastic impeller. These don’t perform differently in terms of thermals, but there should be reduced susceptibility to heated liquid, and theoretically reduced hotspots as a result of the new 6th Generation design. That doesn’t manifest in outright performance, but might manifest in endurance. We won’t know for a few years, realistically.

Our primary tests for the NZXT Kraken X72 review and benchmark include the following:

  • 100% fan / 100% pump
  • 100% fan / silent pump
  • 63% fan (40dBA)

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge