Hardware

Today’s review looks extensively at the thermals and noise of MSI’s RX 5700 XT Evoke OC card. It’s named “OC” because it has a higher stock clock than average – and higher than some other partner models, too – although the actual overclocking performance for all these cards is limited primarily by silicon quality and memory controller quality. We’ll be most heavily comparing the 5700 XT Evoke to the Sapphire 5700 XT Pulse, which performed excellently and got our recommendation in the review. The Evoke OC should cost around $430, although price isn’t final at time of writing, and that’d put it about $10-$20 ahead of Sapphire’s pricing, or $30 over AMD’s reference card. We’ll go deep with thermal and noise analysis today, alongside some gaming analysis, to see if MSI’s Evoke OC is worth the extra money.

Gaming performance is of minimal interest in this type of review. We’ve already established the 5700 XT’s performance in our initial review (and it didn’t change much in our Sapphire Pulse 5700 XT review), and so the point of interest is thermals and acoustic. Gaming performance hardly changes past what the base silicon can do, and overclocking performance is more luck-of-the-draw than PCB influence, and so we’ll only present a few gaming charts here to establish the average delta between the Evoke and Pulse or Reference models. The MSI RX 5700 XT Evoke OC should be available here whenever it’s actually listed, but partners have been slow to post cards on retailers.

We know that Sapphire’s Pulse is supposed to be $410, although current listings have it on pre-order at $420. We also know that the MSI card should be around $430, but they haven’t finalized that pricing. We’ll review based off of the information we (think) we have.

MSI’s really trying to make black-and-gold a thing for components this year. The company used to be a frontrunner for blue-and-black, then the black-and-red era of Z97 onward, and then the black-and-RGB era, and has now started making black-and-gold everything. That trend began with motherboards, like the Ace, but is continuing to video cards. Aside from that, the rest of this will come down to cooler quality. We’ll do a separate tear-down video on our YouTube channel, but let’s dive into thermal data.

In a world of tempered glass, LEDs, and gimmicks, it’s pretty rare that we come across a fully spartan product that focuses on performance. EVGA has filled that market segment with its DARK series motherboards, named at least partially for their lack of LEDs, and its coolers have traditionally been more price/performance focused than looks-oriented. The CLC series does have a couple RGB LEDs, but only enough to tick the marketing boxes. For the rest, the coolers are aimed at hitting a price/performance mix for the best value. Today, we’re reviewing EVGA’s new CLC 360 liquid cooler to see if it hits the mark.

EVGA’s CLC 360 should be priced about $150 on average, which puts it close to competition like the NZXT Kraken X62, Corsair H150i Pro, and some Deepcool Castle models. EVGA’s CLC 360 uses an Asetek pump at its core and is Asetek-supplied, with the usual customizations on top. As typical, these coolers are primarily differentiated by price, fan choice, and maybe warranty, with some further deviation from the supply by way of LEDs. EVGA has gone relatively spartan with LEDs and looks, instead prioritizing the focus on price and performance balance. With an Asetek Gen5 pump, we’re staying on the plastic three-pronged impeller rather than the newer metal impellers, but performance is overall unchanged between Gen5 and Gen6 – the differences are mostly in focus on reduction of permeation in the tubes.

Sapphire’s RX 5700 XT Pulse is the first of the non-reference 5700 XT cards we’ll be looking at. Following the RX 5700 XT Reference card review, where our primary complaints revolved around its design being excessively hot and loud, the 5700 XT Pulse bears promise to rectify those issues. Our review will focus almost entirely on thermals and noise, as the gaming performance is largely unchanged. Even in spite of that, though, reducing operating noise levels is a massive quality of life improvement from the reference design, and that’s more exciting than the gaming performance.

Sapphire’s RX 5700 XT Pulse should cost about $10 more than MSRP for the reference 5700 XT, which would put it at around $410 USD at launch. With that price, the reference card will have never made sense to buy, but that’s basically what we said in our launch review.

We’ll talk more about the components and build quality in our upcoming tear-down video of the card, but let’s just get straight into noise and thermals for today’s review.

NZXT H510 Elite Case Review: Making Things Worse

By Published August 08, 2019 at 6:22 pm

The NZXT H510 Elite is NZXT’s premium spin on the H500 -- no, not the Cooler Master H500, not the H500P, not the H500M, and definitely not the 500D or A500, but the NZXT H500. NZXT’s H500 is a case that wasn’t top-of-the-line in thermal performance but that we liked anyway for its good build quality at a very reasonable $70 price point and reasonable thermals. NZXT must be proud of the new H510 Elite, because they sent us two identical ones. The H510 Elite is being introduced alongside the H510, which is the same as the H500, but with a USB type-C port replacing one of the type-A ports on the front pane. It’s also similar to the H510i, which includes an NZXT “Smart Device.” The Elite has a tempered glass front panel, LEDs, and two RGB fans as front intake (3 fans total) as well as the USB-C port and Smart Device. We’ve expressed our opinion on these devices before, intended to automatically run fans at the optimal cool-and-quiet speed, but these new devices are version 2. We plan to do some more testing with them soon, but for the purposes of this review we bypassed the smart device completely and controlled fan speed via the motherboard as usual.

For the purposes of this review, we’re going to pretend no other cases named H500 exist. If we say H500, we mean the NZXT H500. Note also that we had written and filmed this about 3 weeks prior to publishing, but notified NZXT in between writing and now that we had found issues with thermals in the case. As such, NZXT has modified its listing and now offers an extra 120mm exhaust fan (free for those who already bought the case) with the enclosure. We didn’t rewrite our entire review around this change, but added in two charts to cover it where necessary.

Alongside the 3900X and 3700X that we’re also reviewing, AMD launched its R5 3600 today to the public. We got a production sample of one of the R5 3600 CPUs through a third-party and, after seeing its performance, we wanted to focus first on this one for our initial Ryzen 3000 review. We’ve been recommending AMD’s R5 CPUs since the first generation, as Intel’s i5 CPUs have seen struggles lately in frametime consistency and are often close enough to AMD that the versatility, frametime consistency, and close-enough gaming performance have warranted R5 purchases. Today, we’re revisiting with the R5 3600 6-core, 12-thread CPU to look at gaming, production workloads with Premiere, Blender, V-Ray, and more, power consumption, and overclocking.

This week has been the busiest in our careers at GN. The editorial/testing team was two people, working in shifts literally around the clock for 24/7 bench coverage, and the video production team was three people (all credited at article's end, as always). We invested all we could into getting multiple reviews ready for launch day and will stagger publication throughout the day due to YouTube's distribution of content. We don't focus on ad revenue on the site these days and instead focus on our GN Store products and Patreon for revenue, plus ad revenue on YouTube. If you would like to support these colossal efforts, please consider buying one of our new GN Toolkits (custom-made for video card disassembly and system building, using high-quality CRV metals and our own molds) or one of our system building modmats. We also sell t-shirts, mousepads, video card anatomy posters, and more.

Notable changes to our testing methods, other than overhauling literally everything (workstation overhaul, gaming overhaul) a few months ago, would include the following:

  • Windows has all updates applied on all platforms, up to version 1903
  • All BIOS updates and mitigations have been applied
  • For new AMD Ryzen CPU testing, we are using a Gigabyte X570 Master motherboard with BIOS version FC5 installed, per manufacturer recommendations
  • We have changed to GSkill Trident Z RGB memory at 4x8GB and 3200MHz. The 32GB capacity is needed for our Photoshop and Premiere benchmarks, which are memory-intensive and would throttle without the capacity. 

The memory kit is an important change for us. Starting with these new reviews, we are now manually controlling every timing surfaced. That includes secondary and tertiary timings. Previously, we worked to control critical timings, like primary and RFC, but we are now controlling all timings manually. This has tightened our margin of error considerably and has reduced concern of “unfair” timings being auto-applied by the various motherboards we have to use for CPU reviews. “Unfair” in this instance typically means “uncharacteristically bad” as a result of poor tuning by the motherboard maker. By controlling this ourselves, we eliminate this variable. Some of our error margins have been reduced to 0.1FPS AVG as a result, which is fantastic.

AMD’s biggest ally for the RTX launch was NVIDIA, as the company crippled itself with unimplemented features and generational price creep out the gate. With RTX Super, NVIDIA demonstrates that it has gotten the memo from the community and has driven down its pricing while increasing performance. Parts of the current RTX line will be phased-out, with the newer, better parts coming into play and pre-empting AMD’s Navi launch. The 2070 Super is priced at $500, $50 above the 5700 XT, and the on-paper specs should put it about equivalent with an RTX 2080 in performance; it’s even using the TU-104 RTX 2080 die, further reinforcing this likely position. The 2060 Super sees a better bin with more unlocked SMs on the GPU, improving compute capabilities and framebuffer capacity beyond the initial 2060. Both of these things spell an embarrassing scenario about to unfold for AMD’s Radeon VII card, but we’ll have to wait another week to see how it plays-out for the yet unreleased Navi RX cards. There may be hope yet for AMD’s new lineup, but the existing lineup will face existential challenges from the freshly priced and face-lifted RTX Super cards. Today, we’re reviewing the new RTX Super cards with a fully revamped GPU testing methodology.

The first question is this: Why the name “Super?” Well, we asked, and nobody knows the answer. Some say that Jensen burned an effigy of a leather jacket and the word “SUPER” appeared in the toxic fumes above, others say that it’s a self-contained acronym. All we know is that it’s called “Super.”

Rather than pushing out Ti updates that co-exist with the original SKUs, NVIDIA is replacing the 2080 and 2070 SKUs with the new Super SKUs, while keeping the 2060 at $350. This is a “damned if you do, damned if you don’t” scenario. By pushing this update, NVIDIA shows that it’s listening – either to consumers or to competition – by bringing higher performing parts to lower price categories. At the same time, people who recently bought RTX cards may feel burned or feel buyer’s remorse. This isn’t just a price cut, which is common, but a fundamental change to the hardware. The RTX 2070 Super uses TU104 for the GPU rather than TU106, bumping it to a modified 2080 status. The 2060 stays on TU106, but also sees changes to SMs active and memory capacity.

As we’ve been inundated with Computex 2019 coverage, this HW News episode will focus on some of the smaller news items that have slipped through the cracks, so to speak. It’s mostly a helping of smaller hardware announcements from big vendors like Corsair, NZXT, and SteelSeries, with a side of the usual industry news.

Be sure to stay tuned to our YouTube channel for Computex 2019 news.

The Versa J24 TG RGB Edition is a budget case from Thermaltake. Our understanding is that the J22/J23/J24/J25 are basically the same chassis with the same number of fans and different front panels, but trying to remember Thermaltake case SKUs is a great way to go crazy. The sample sent to us for review is specifically the RGB edition and not the newer ARGB edition, which may or may not have been a mistake on Thermaltake’s part, but saving $10 over an extra vowel is a win in our book.

The case interior is just big enough to fit an ATX motherboard with little room to spare on any side, but there are adequate cutouts along the front edge to route all the cables. The case is about as small as it can be without entering Q500L territory, almost exactly the same dimensions as the Meshify C but slightly longer. Cable management room is understandably restricted. There is space under the PSU shroud, but users with one or more 3.5” drives will struggle to find a place for power cables. The HDD cage can be removed or shifted 2.5cm back towards the rear of the case, a welcome change from budget cases that usually rivet the HDD cage in place.

We recently revamped our CPU benchmarking for significantly expanded workstation benchmarks, allowing us to better analyze CPU performance in non-gaming scenarios. Of course, this methodology update wouldn’t be complete without revisions to our gaming tests. These updates include more games, better testing in games where we’ve encountered GPU bottlenecks (that limit usefulness in CPU reviews), and improved accuracy of results. This takes the knowledgebase of what we’ve learned over the past year and builds upon shortcomings we’ve found.

With Ryzen 3000 CPUs just around the corner, likely announced at Computex next week, we have begun the process of preparing our test bench for the inevitable 3700X (or whatever they end up calling it). This means re-running CPUs through our testing until we repopulate the charts in time for Ryzen 3’s release, which is a process that we’ll begin publishing today.

Fractal’s Define S2 Vision RGB takes the glass-and-LED approach to cases that most manufacturers discovered a few years ago. This particular approach, as we’ve discussed in years prior, is to take an existing chassis that’s reasonably good, then glue glass to metal panel carriers and stick some RGB LED fans in the case. It’s a few minutes of PM work, but allows a case to be refreshed and upsold for more.

The trouble is that Fractal has already used this particular body in minimally half a dozen SKUs, with the R6 serving as the baseline, the Define S2 following, the S2 Meshify after that, and then all the variants with windows, solid panels, or color variations. We reviewed the R6 a while ago, and all those build notes apply here. We also reviewed the S2, where we said to read the R6 review for build quality notes. None of that has really changed, or at least, very little of it has.

The refresh is absolutely on the lazy side, as it really just is a re-refresh of a case with glass and LEDs. It’s an old approach to glass and LEDs. Although the body is fine, we need to see a lot more action to justify a $240 price, or $190 for the glass version without RGB LED fans (sticking a $50 price tag on LEDs alone).

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge