It’s been a long time since we’ve reviewed any mini-ITX cases. The standard system that we use for testing ATX cases includes a full-sized GPU, PSU, and CPU cooler, which may or may not fit in small form factor cases, as well as an ATX motherboard that definitely won’t. Even if our components were small enough to fit, ATX and mini-ITX enclosures are like apples and oranges--SFF cases often have specific uses and different priorities than standard mid-towers.

Enough time has passed that it’s worth it to put together a separate ITX benchmarking system with a separate table of results to compare. To start off our database, we’re doing a roundup of three not-so-new cases from our backlog: the Thermaltake V1, Silverstone SG13, and the Cryorig Taku. This will start our charts, and we intend to work toward expanding those charts with the full suite of cases, as usual, including several upcoming products at Computex.

The NZXT M22 is one of the stranger liquid coolers made by a relatively large liquid cooling manufacturer. NZXT dumped Asetek for this 120mm closed-loop cooler, instead opting for a pump-in-radiator design that circumvents Asetek patents and permits sale in the US. The M22 is a complement to NZXT’s Asetek products at the high-end, but comes in at $100 and 120mm. That’s a bit high for a 120mm liquid cooler, particularly considering that competition from EVGA’s CLC 120 comes in at $70 and is made by the familiar Asetek, but its performance may make up for the price differential. Today, we’ll find out.

Primary competition in this price class includes NZXT’s own Kraken X42, a 140mm Asetek-made design, and 240mm units from the same price class. NZXT’s M22 ships for $100 MSRP, and at that price, it’s competing (strictly in price) with the likes of the EVGA CLC 240, the Corsair H100i V2, and NZXT’s units. If we look strictly at size class, the EVGA CLC 120 competes most directly at $70. Despite its low price, that’s still a modern Asetek unit; it uses the same pump as any higher-end cooler, just has fewer fans. It’s not cheap garbage – it’s not something we recommend, either, but it’s not going to fall apart.

It’s a fierce market at $100. Even air coolers would reach equivalence or superior performance than NZXT’s M22. They’re going for one demographic, and one only: Has RGB LEDs and is exactly 120mm. That’s it. That’s the demo. If you’re not that, it’s really not worth the time or money to grab the M22.

To NZXT’s credit, the LED integration is the best-in-class for a 120mm liquid cooler. It’s also expensive, so that makes for an odd combination of size and price.

Intel’s Pentium G line has largely managed to hold-on as one of the better buys of the past few years. There was a brief period where the G3258 made a lot of sense for ultra budget-minded buyers, then the G4560 recently – particularly at the actually good price of $60 – and now Intel has its Pentium G 5000 series. The G4560 had stunted growth from limited stock and steep hikes on MSRP, forcing people to consider i3s instead, up until R3s shipped. The 4560 remained a good buy as it dropped towards $60, fully capable of gaming on the cheap, but it is now being replaced by the units we’re reviewing this month.

We’re starting with the Intel Pentium G5600, which is the most expensive of the new Pentium Gold line. At $95, it’s about $40 more than the G4560, $10 more than the G5500, and $20 more than the G5400. The R3 1300X is about $105, and the R3 1200 is about $95.

NZXT’s Kraken X72 closed-loop liquid cooler is another in the XX2 series, following the 280mm X62 that we previously reviewed. The X72 is a 360mm cooler, putting it in more direct competition with the Corsair H150i Pro (the first to feature a 6th-gen pump) and Fractal S36, and indirect competition – in performance only – with the EVGA CLC 280.

NZXT’s X72 costs $200, making it one of the most expensive CLCs on the market. The Floe 360 lands at around $184, the EK Phoenix 360 – a semi-open solution – is the only one that lands significantly higher. The X72 still uses the same pump design as when we tore-down the X42, running Asetek’s 5th Gen pump and a custom, NZXT-designed PCB for RGB lighting effects. Functionally, 5th Gen has proven to be marginally superior – technically – to its 6th Gen for outright cooling performance. We’re talking nearly margins of error. The newest generation is presently only used on Corsair’s H150i and H115i Pro products, as Corsair largely dictated what went into the 6th generation. Major differences are made-up by the metal impeller, similar to the one used by Dynatron in old Antec Kuhler products, rather than a 3-prong plastic impeller. These don’t perform differently in terms of thermals, but there should be reduced susceptibility to heated liquid, and theoretically reduced hotspots as a result of the new 6th Generation design. That doesn’t manifest in outright performance, but might manifest in endurance. We won’t know for a few years, realistically.

Our primary tests for the NZXT Kraken X72 review and benchmark include the following:

  • 100% fan / 100% pump
  • 100% fan / silent pump
  • 63% fan (40dBA)

We’ve previously tested custom copper integrated heat spreaders (IHS) for Intel, primarily the unit sold by Rockit Cool for LGA115X CPUs. Our findings of the custom copper IHS (sold here) for the i7-8700K were that, generally, it was a fun, worthwhile project at $20, but that the thermal improvement was not game-changing. It was still impressive, though, as we monitored between 4-5 degrees Celsius improvement from the IHS replacement on the 8700K, partly benefiting as a result of the increased surface area over the stock Intel heat spreader. That’s a lot of uplift for something that isn’t a CPU cooler, and if you’re up against hard requirements for noise in your system, it could allow for just enough headroom to slow-down the case fans a bit more.

Ryzen is different, as its heatspreader is one large block, as opposed to a machined block with cut-outs and dips and generally smaller surface area. Rockit Cool improved on Intel IHS performance by increasing surface area, but had little to improve on with AMD’s. Both Intel and AMD use copper IHS units, but all of them are nickel-plated. This shouldn’t impact performance significantly and helps with cleaning.

Today, we’re benchmarking a custom copper IHS for AMD Ryzen CPUs and APUs, using the Rockit Cool copper IHS on an AMD R3 2200G that we previously delidded and benchmarked.

The AMD R5 2600 and 2600X are, we think, among the more interesting processors that AMD launched for its second generation. The R5 1600 and 1600X received awards from us for 2017, mostly laying claim to “Best All-Around” processor. The 1600 series of R5 CPUs maintained 6 cores, most the gaming performance of the R7 series, and could still capably stream or perform Blender-style production rendering tasks. At the $200-$230 price range, we claimed that it functionally killed the quad-core i5 CPU, later complicated by Intel’s six-core i5 release.

The R5 2600 and 2600X have the same product stack positioning as the 1000-series predecessors, just with higher clock speeds. For specs, the R5 2600X operates at 3.6GHz base and 4.2GHz boost, with the 2600 at 3.4/3.9GHz, and the R5 1600X/1600 operating at a maximum boost of 4.0 and 3.6GHz, respectively.

Reviewing the AMD R7 2700X was done outside of normal review provisions, as AMD didn’t sample us. We’ve had the parts for a month now, and that has meant following development, EFI updates, and more as they’ve been pushed. We have multiple chips of every variety, and have been able to cross-validate as the pre-launch cycle has iterated. Because of the density of data, we’re splitting our content into multiple videos and articles.

Today’s focus will be the AMD R7 2700X and R7 2700 reviews, especially for live streaming performance versus the i7-8700K, gaming performance, and production (Blender) performance. Most importantly, however, we dedicate time to talk about the significant improvements that AMD has made in the volt-frequency department. At a given frequency, e.g. 4.0GHz, Ryzen 2000 operates at a heavily reduced voltage versus Ryzen 1. We’ll dig into this further in this review, but check back later for our R5 2600X and 2600 reviews (combined in one piece), including 2600X vs. 8600K streaming benchmarks. We’re also looking at VRM thermals, motherboard PCBs and their VRM quality, memory overclocking and scalability (in this content), and more.

There is a lot of confusion about AMD’s branding – Zen 2 vs. Ryzen 2 vs. Zen+. We’re calling these CPUs “Ryzen 2,” because they’re literally called “Ryzen 2X00” CPUs. This is not the same as the Zen 2 architecture, which is not out yet.

Note: For overclocking, we only OC one CPU of each core count – so just the R7 2700X or R7 2700, but beyond validation of maximum frequency, there’s no need to OC both and run each through 20 hours of testing.

We covered Lian Li’s O11 Dynamic at CES earlier this year. It’s related to the older PC-O11 model, but this new version was designed in collaboration with professional overclocker Der8auer, whom we’ve interviewed several times. It’s obvious that he knows how important good cooling is, and his delidding tools make it clear that he wouldn’t carelessly put his name on a low quality product, so we were very interested in getting our hands on one of these cases for review.

Lian Li also has a reputation, and it doesn’t involve making enclosures that are normal looking or affordable by mortals. They took a step away from that reputation with the Alpha 550X and 330, cases that at least approach a competitive price. The O11 Dynamic goes a step further, with the Newegg pre-order price set at an affordable $100, or $130 by the time this is published.

Our Lian Li O11 Dynamic review precedes the inevitable O11 Air review, which is due for a release date in May or June. The O11 Dynamic will begin shipping immediately, and is targeted more for liquid cooling enthusiasts than air-cooled builds -- but you could still buy fans, obviously, and air cool the O11 Dynamic.

Intel’s Hades Canyon NUC is well-named: It’s either a reference to hell freezing over, as AMD and Intel worked together on a product, or a reference to the combined heat of Vega and an i7 in a box that’s 8.5” x 5.5” in size. Our review of Hades Canyon looks at overclocking potential, preempting something bigger, and benchmarks the combined i7 CPU and Vega M GPU for gaming and production performance. We’re also looking at thermal performance and noise, as usual. As a unit, it’s one of the smallest, most-powerful systems on the consumer market get right now. We’ll see if it’s worth it.

There are two primary SKUs for the Intel NUC on Newegg, both coming out on April 30th. The unit which most closely resembles ours is $1000, and includes the Intel i7-8809G with 8MB of cache and a limited-core Turbo up to 4.2GHz. The CPU is unlocked for overclocking. It’s coupled with an AMD Vega M GH GPU with 4GB of high-bandwidth memory, also overclockable, but does not include memory or an SSD. You’re on your own for those, as it’s effectively a barebones kit. If you buy straight from Intel’s SimplyNUC website, the NUC8i7HVK that we reviewed comes fully-configured for $1200, including 8GB of DDR4 and a 128GB SSD with Windows 10. Not unreasonable, really.

Corsair’s H115i Pro launched alongside the H150i Pro, the first two closed-loop liquid coolers to use the Asetek 6th-Gen pump. As we said in the H150i Pro review, Asetek didn’t do Corsair any favors, here – the new pump isn’t much different from the old one, and primarily focuses on RGB implementations akin to NZXT’s custom work on the XX2 series. Regardless, Corsair has taken this and used it as an opportunity to bundle their new CLCs with silence-focused fans, the ML120 Pro fans.

As shown in our tear-down of the 6th Gen Asetek pump, where we took apart the H150i Pro, the primary changes of the pump are endurance-focused, not performance-focused. Asetek is ultimately the supplier, here, and that means Corsair’s main contributions are restricted to fan choice; that said, Corsair did dictate large parts of the 6th Generation design. Asetek now includes an RGB LED kit for manufacturers, and also includes the PCB for programmable LEDs (something that NZXT previously went through great effort to customize on the 5th generation). The 6th Gen Corsair coldplate is also marginally smaller than the fifth generation, but other than that, it’s all endurance-driven. Asetek has changed its impeller to a metal option, similar to the old Dynatron impellers in the Antec 1250 Kuhler series. Asetek has also reportedly “optimized” their liquid paths to reduce hotspots that caused higher permeation than desired in older generations.

In terms of performance, though, our extensive testing results (and our contacts) all indicate that the 6th Generation is not an improvement in cooling. At best, they’re the same. And that’s at best.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge