Since our delid collaboration with Bitwit, we’ve been considering expanding VRM temperature testing on the ASUS Rampage VI Extreme to determine at what point the VRM needs direct cooling. This expanded into determining when it’s even reasonable to expect the stock heatsink to be capable of handling the 7980XE’s overclocked heat load: We are seeking to find at what point we tip into territory of being too power-hungry to reasonably operate without a fan directly over the heatsink.

This VRM thermal benchmark specifically looks at the ASUS Rampage VI Extreme motherboard, which uses one of the better X299 heatsinks for its IR3555 60A power stages. The IR3555 has an internal temperature sensor, which ASUS taps into for a safety throttle in EFI. As we understand it, the stock configuration sets a VRM throttle temperature of 120C – we believe this is internal temperature, though the diode could also be placed between the FETs, in which case the internal temperatures would be higher.

AMD-exclusive partner XFX announced its competition to ASUS' still might-be-out-some-day-maybe Vega 64 Strix video card. At this point in time, partner cards still feel something like super cars: Nice to look at, probably won't own it.

But they're coming, so we're told, and the new target time seems to be "sometime in November." AMD partners have largely indicated supply issues of the Vega GPUs as the limiting factor of card presence on the market. The supply should build-up at some point, it's just a matter of if partners can secure a restock date to build confidence with retailers and distributors.

Internet cafes and gaming centers probably aren’t a market segment most would recognize in the US, but they’re popular in other parts of the world--in particular, Asia--and ASUS seems to target that segment with the purpose-built Expedition A320M Gaming motherboard.

The entry-level AM4 board uses the low-end A320 chipset, and offers features that appear to identify with the rigors of crowded public places, such as iCafes and libraries. One such feature is the moisture-resistant coating on the motherboard, intended to protect against higher humidity environments. This is particularly useful in places like Taiwan, where humidity is high enough to cause corrosion on some components (that we’ve seen in person, no less). Additionally, the board has certain anti-theft features to help curb theft of memory modules and GPUs.

Following-up our tear-down of the ASUS ROG Strix Vega 64 graphics card, Buildzoid of Actually Hardcore Overclocking now visits the PCB for an in-depth VRM & PCB analysis. The big question was whether ASUS could reasonably outdo AMD's reference design, which is shockingly good for a card with such a bad cooler. "Reasonably," in this sentence, means "within reasonable cost" -- there's not much price-to-performance headroom with Vega, so any custom cards will have to keep MSRP as low as possible while still iterating on the cooler.

The PCB & VRM analysis is below, but we're still on hold for performance testing. As of right now, we are waiting on ASUS to finalize its VBIOS for best compatibility with AMD's drivers. It seems that there is some more discussion between AIB partners and AMD for this generation, which is introducing a bit of latency on launches. For now, here's the PCB analysis -- timestamps are on the left-side of the video:

We’ve already sent off the information contained in this video to Buildzoid, who has produced a PCB & VRM analysis of the ROG Strix Vega 64 by ASUS. That content will go live within the next few days, and will talk about whether the Strix card manages to outmatch AMD’s already-excellent reference PCB design for Vega. Stay tuned for that.

In the meantime, the below is a discussion of the cooling solution and disassembly process for the ASUS ROG Strix Vega 64 card. For cooling, ASUS is using a similar triple-fan solution that we highly praised in its 1080 Ti Strix model (remarkable for its noise-normalized cooling performance), along with similar heatsink layout.

Learn more here:

This content piece aims to explain how Turbo Boost works on Intel’s i7-8700K, 8600K, and other Coffee Lake CPUs. This primarily sets forth to highlight what “Multi-Core Enhancement” is, and why you may want to leave it off when using a CPU without overclocking.

Multi-core “enhancement” options are either enabled, disabled, or “auto” in motherboard BIOS, where “auto” has somewhat nebulous behavior, depending on board maker. Enabling multi-core enhancement means that the CPU ignores the Intel spec, instead locking all-core Turbo to the single-core Turbo speeds, which means a few things: (1) Higher voltage is now necessary, and therefore higher power draw and heat; (2) instability can be introduced to the system, as we observed in Blender on the ASUS Maximus X Hero with multi-core enhancement on the 8700K; (3) performance is bolstered in-step with higher all-core Turbo.

As we do each week, we’ve rounded-up the major hardware news topics for the past week of industry announcements, all headlined in today’s video. The show notes are also posted in this article, if that format is preferred.

Major news topics seem to pertain to Vega: Frontier Edition – which has had fresh hype attached to it, following a newly published preview – and special edition mining cards, with additional news covering industry topics and launches. SSD and RAM prices remain a mainstay discussion topic for us, though we’ve also got some information on a Blender update, LGA2066 cooler compatibility, SilverStone’s Strider PSUs, and G.Skill’s new memory. More below.

One of the most requested additions to our video card testing has been to normalize for noise. Several of you have emailed, tweeted, or tagged us on Reddit to ask for this type of testing, and so we started the process of re-testing some devices to build a database. The idea is to find fan RPM at a fixed dBA output – 40dBA, for example – and then test thermal performance when fans match that noise level. This doesn’t take into account the type of noise, e.g. frequency spectrum analysis, but it’s a good start to a new type of testing. And, honestly, most of these coolers sound about the same pitch/frequency (subjectively) with regard to frequency output.

The ASUS ROG Strix 1080 Ti review is our first to introduce normalized noise testing, and it’s an interesting card to start us off. We’ll talk more about that specific testing approach lower down.

We’ve got a lot of Ryzen news confirmations leading into the product’s inevitable launch, and will today be focusing on the stock coolers, ASUS X370 motherboards, and die shots of the Ryzen architecture.

And there’ll be more soon, of course!

We previously noted that some motherboards at CES contained text indicating support for an AMD “S3.0 Radiator,” which we could then only assume would be a stock cooler bundled with high-end Ryzen CPUs. This was plainly on display at CES, though we couldn’t get any official information on the cooler from AMD.

Rounding-out our Best Of coverage from Computex 2016 – and being written from a plane over the Pacific – we're back to recap some of the major GTX 1080 AIB cards from the show. AMD's RX480 was only just announced at Computex, and so board partner versions are not yet ready (and weren't present), and the GTX 1070 only had one card present. For that reason, we're focusing the recap on GTX 1080 GP104-400 video cards from AIB partners.

Until a point at which all of these cards have been properly in our hands for review in the lab, we'd recommend holding off on purchases – but we're getting there. We've already looked at the GTX 1080 reference card (“Founders Edition,” by new nomenclature) and built our own GTX 1080 Hybrid. The rest will be arriving soon enough.

For now, though, here's a round-up of the EVGA, ASUS, Gigabyte, and MSI AIB GTX 1080s at Computex. You can read/watch for more individualized info at each of these links:

Page 1 of 4

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge