While traveling, the major story that unfolded – and then folded – pertained to the alleged unlocking of Vega 56 shaders, permitting the cards to turn into a “Vega 58” or “Vega 57,” depending. This ultimately was due to a GPU-Z reporting bug, and users claiming increases in performance hadn’t normalized for the clock change or higher power budget. Still, the BIOS flash will modify the DPM tables to adjust for higher clocks and permit greater HBM2 voltage to the memory. Of these changes, the latter is the only real, relevant change – clocks can be manually increased on V56, and the core voltage remains the same after a flash. Powerplay tables can be used to bypass BIOS power limits on V56, though a flash to V64 BIOS permits higher power budget.

Even with all this, it’s still impossible (presently) to flash a modified, custom BIOS onto Vega. We tried this upon review of Vega 56, finding that the card was locked-down to prevent modding. This uses an on-die security coprocessor, relegating our efforts to powerplay tables. Those powerplay tables did ultimately prove successful, as we recently published.

We made Gigabyte aware of an unnecessarily high auto vCore table back in December, prior to the launch and NDA lift of Kaby Lake processors. By the time of review, that still hadn’t been resolved, and we noted in our Gigabyte Aorus Z270X Gaming 7 review that we’d revisit thermals if the company issued an update. Today, we’re doing just that. Gigabyte passed relevant information along to engineering teams and worked quickly to resolve the high auto vCore (and thus high CPU temperatures) on the Gaming 7 motherboard.

We’ve been impressed with Gigabyte’s responses overall. The representatives have been exceptionally helpful in troubleshooting the issue, and were open ears when we presented our initial concerns. The quick turn-around time on a BIOS update and subsequent auto vCore reduction shows that they’re listening, which is more than we can say for a lot of companies in this business. In an industry where it’s easier to jam fingers in ears and ignore a problem, Gigabyte’s fixed this one.

Here’s the original board review with the temperature criticisms, something we also talked about in our 7700K review.

Before proceeding: This endeavor is entirely at the risk of the user, and there is a possibility of “bricking” or permanently damaging the hardware during this process.

In 4GB vs. 8GB AMD RX 480 benchmarking, our testing uncovered improvement in just a few titles – but the improvements were substantial when present. It is no mystery that early press samples of the card allowed for flashing to 4GB, which resulted in a 1750MHz memory clock and locked 4GB of the VRAM. This is reasonable, as media obviously wanted to test both versions of the card, but AMD wanted to limit sampling. We actually liked the way this was handled, given the option between a flashable sample and strictly an 8GB sample.

But there's more to it than that: Consumers have reported success flashing VBIOS from sold 4GB retail samples, resulting in 8GB cards. Let's talk about why AMD's shipping of “locked” cards makes sense, risks, and how to perform the procedure.

The silicon powering modern microprocessors consumes significantly less wattage than consumer technology leading up to this point. Look back at the GTX 400 series (Fermi) for an example of this: The flagship GTX 480 was 250W, and it ran damn hot, too. NVidia acknowledged this when we toured their facilities, noting that the complaints of noise, heat, and power consumption directly impacted the development of Kepler units. To put things into perspective, the GTX Titan also draws 250W and has approximately 2.5x the transistors over the GTX 480 (7.5B vs. 3B).

being-green

Despite the overall trend toward improved power-to-performance ratios, a mid-range gaming machine can still easily pull 500W+ under full computational (CPU/GPU) load -- that's a lot of power. Even idle, without BIOS advanced power saving features configured, you could easily be resting on a couple hundred watts. Personally, I've got almost a constant system up-time, and that consumes a lot of power. In order to mitigate power consumption and the electric bill (~$20 / mo. with full up-time on my machine, dropped to $10 / mo after taking these steps), we can use modern advanced power saving states implemented by Intel and AMD.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge