With B350, B360, Z370, Z390, X370, and Z490, we think it’s time to revisit an old topic answering what a chipset is. This is primarily to establish a point of why we need clarity on what each of these provides – there are a lot of chipsets with similar names, different socket types, and similar features. We’re here to define a chipset today in TLDR fashion, with a later piece to explain the actual chipset differences.

As for what a chipset actually is, this calls back to a GN article from 2012 – though we can do a better job now. The modern chipset is a glorified I/O controller, and can be thought of as the spinal cord of the computer, while the CPU is the disembodied brain. Intel calls its chipset a PCH, or Platform Controller Hub, while AMD just goes with the generic and appropriate term “chipset.” The chipset is the center of I/O for the rest of the motherboard, assigning I/O lanes to devices like SATA, gigabit ethernet, and USB ports.

DDR5 may achieve mass switch-over adoption by 2022, based on new estimates out of memory makers. A new Micron demonstration had DDR5 memory functional, operating on a Cadence IMC and custom chip, with 4400MHz and CL42 timings. It's a start. Micron hopes to tighten timings over time, and aims to increase frequency toward 6400MHz as DDR5 matures. It's more of a capacity solution, too, with targeted densities at 16Gb and 32Gb for the future.

In addition to the week's DDR5 news, detailed in more depth below, we also have roadmap leaks from AMD and Intel that indicate Z490 and Z390 chipsets shipping this year. We're not yet sure what Z490's purpose is, but we know that it's an AMD product -- and the first of the new chipsets to take a Z prefix, just like Intel's performance series.

Our show notes below cover all the stories, or just check the video:

As we remarked back when we reviewed the i5-8400, launched on its lonesome and without low-end motherboard support, the Intel i5-8400 makes most sense when paired with B360 or H370 motherboards. Intel launched the i5-8400 and other non-K CPUs without that low-end chipset support, though, leaving only the Z370 enthusiast board on the frontlines with the locked CPUs.

When it comes to Intel chipset differences, the main point of comparison between B, H, and Z chipsets would be HSIO lanes – or high-speed I/O lanes. HSIO lanes are Intel-assigned per chipset, with each chipset receiving a different count of HSIO lanes. High-speed IO lanes can be assigned somewhat freely by the motherboard manufacturer, and are isolated from the graphics PCIe lanes that each CPU independently possesses. The HSIO lanes are as detailed below for the new 8th Generation Coffee Lake chipsets:

This week's hardware news recap covers an Intel document leaked to GN, detailing H370, B360, & other launches, alongside coverage of the Zen+ & Zen 2 launches, AIB partner Vega cards, and memory kit releases. The last bit of coverage shows the new 4500 & 4600MHz memory kits that have primarily emerged from Corsair, though other vendors are following suit with new memory kit launches. GSkill, for instance, is pushing more "Ryzen-ready" memory kits in the RGB line, focusing mostly on the 3200MHz speeds that were largely shipped to reviewers. GeIL is working on RGB memory kits that synchronize with ASUS Aura RGB lighting effects for motherboards and video cards.

As for video card news, we confirmed with MSI that the company presently has limited or no plans for Vega partner model cards. Gigabyte plans to make cards, but the launch date is tenuous -- as is ASUS' launch date, at this point, as both vendors are working out final issues in manufacturing. We'd wager that it's primarily to do with supply availability, though VBIOS + driver challenges also exist.

AMD’s Ryzen platform is on its march to the launch window – likely February of 2017 – and will be pushing non-stop information until its time of delivery. For today, we’re looking at the CPU and chipset architectures in greater depth, following-up on yesterday’s motherboard reveal.

First, let’s clear-up nomenclature confusion: “Zen” is still the AMD next generation CPU architecture name. “Ryzen” is the family of CPUs, comparable to Intel’s “Core” family in some loose ways. Each Ryzen CPU will exist on the Zen architecture, and each Ryzen CPU will have its own individual alphanumeric identifier (just like always).

It’s not yet time to pen a full, in-depth comparison between Intel’s forthcoming Kaby Lake chipsets, including Z270, H270, and whatever may become of the lower-end H- and B- lines. There’s still data we’re waiting on, and won’t have access to for a little while yet. Still, some preliminary Z270 & H270 chipset specs have been reported by Benchlife, including information on PCI-e lane count and HSIO lanes. This coverage follows the same format as our Z170 vs. H170, H110, B150, & Q150 differences article.

If the early information is to be believed, the Kaby Lake-ready platform primarily focuses its efforts on largely minor improvements, like additional HSIO lanes to support a burgeoning PCI-e-enabled SSD market. Z270 will move from Z170’s 26 HSIO (High-Speed I/O) lanes to 30 HSIO lanes, providing an additional 4 lanes for M.2 and PCI-e AICs (add-in cards). H270, meanwhile, will move from H170’s 22 lanes up to parity with the Z-series platform, also hosting 30 HSIO lanes. The additional lanes fall into the category of “general purpose” PCI-e lanes, resulting in the following configuration:

The AMD Gen 7 APUs and AM4 platform have officially begun shipment in some OEM systems this weekend, primarily through OEMs at physical retail locations. AMD's launch includes entry-level and mainstream AM4 chipsets, promising the high-end Zen chipset (990FX equivalent) at a later date. AM4 platform shipment begins with the B350, A320, and X/B/A300 chipsets in accompaniment with the A12-9800 and down.

Let's run through the new Gen7 APU finalized specs first, then talk AM4 chipset specs. Note that the new AM4 motherboards are making major moves to unify the FM and AM platforms under AMD's banner, so Zen's FX line equivalent and the Gen7 APUs will both function on the same motherboard. The below table (following the embedded video) provides the specs for the A12-9800, X4 950, and other relevant chips:

In a recent story circulating the web, rumors of AMD's (confirmed) deference to AS Media for its Zen chipset design have pointed toward USB3.1 transmission speed degradation issues. The reports indicated a slow-down of USB3.1 speeds as ports are distanced from the chipset, resolvable by motherboard manufacturers with a separate controller for USB3.1. The reports have not presented numbers for the alleged speed degradation; we do not have a clear picture of how heavily – if at all – this rumor impacts USB device speed.

Should USB3.1 transfer speeds truly be impacted this greatly by circuit distance, motherboard manufacturers can opt for inclusion of aftermarket ICs that resolve the issue at increased BOM. There is also still some time prior to mass production and shipping – motherboard manufacturers and AS Media may find a remedy to this reported choke-point by then.

A chipset acts as the computer's brainstem; it connects everything, serving as a central hub for communications and I/O management across the motherboard and its attached devices. Intel chipset selection for gaming machines is often simplified into a just selecting the newest Z-series chipset (Z170, in this case), which isn't always necessary. Rather than buying features that go unused, we suggest reading through our below specs comparison of Z170, H170, H110, and B150, then picking the best chipset for the job.

This chipset comparison looks at the differences between Intel's new 100-series chipsets for Skylake (Z170, H170, H110, B150, Q170, and Q150). We'll talk about the best Intel chipset for a new motherboard or CPU, looking at different use cases for each.

Starting with the specs to clear everything up, we'll initiate with consumer-focused Z- and H-series chipsets.

Intel's Skylake Core i7-6700K CPU has officially been reviewed in gaming capacity. With the launch, we indicated that Intel would be rolling-out the Z170 chipset as a replacement to the current Z97 motherboard brainstem. A few major changes have been instituted in Z170 – some more visible to the consumer than others – and we've detailed most of them below. Motherboards already exist with Z170, like this MSI Krait board.

This chipset comparison between Z170 and Z97 aims to detail the differences between Intel's Haswell motherboard platform and its Skylake successor. Note that the chipsets are coupled with different CPU architectures and, as such, are not interchangeable outside of their supported processor lists. Z170 is joined by the hip with LGA1151 socket types.

Page 1 of 2

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge