Testing the Xbox One X for frametime and framerate performance marks an exciting step for GamersNexus. This is the first time we’ve been able to benchmark console frame pacing, and we’re doing so by deploying new, in-house software for analysis of lossless gameplay captures. At a very top-level, we’re analyzing the pixels temporally, aiming to determine whether there’s a change between frames. We then do some checks to validate those numbers, then some additional computational work to compute framerates and frametimes. That’s the simplest, most condensed version of what we’re doing. Our Xbox One X tear-down set the stage for this.

Outside of this, additional testing includes K-type thermocouple measurements from behind the APU (rear-side of the PCB), with more measurements from a logging plugload meter. The end result is an amalgamation of three charts, combining to provide a somewhat full picture of the Xbox One X’s gaming performance. As an aside, note that we discovered an effective Tcase Max of ~85C on the silicon surface, at which point the console shuts down. We were unable to force a shutdown during typical gameplay, but could achieve a shutdown with intentional torture of the APU thermals.

The Xbox One X uses an AMD Jaguar APU, which combines 40 CUs (4 more than an RX 480/580) at 1172MHz (~168MHz slower than an RX 580 Gaming X). The CPU component is an 8C processor (no SMT), and is the same as on previous Xbox One devices, just with a higher frequency of 2.3GHz. As for memory, the device is using 12GB of GDDR5 memory, all shared between the CPU and GPU. The memory operates an actual memory speed of 1700MHz, with memory bandwidth at 326GB/s. For point of comparison, an RX 580 offers about 256GB/s bandwidth. The Xbox One X, by all accounts, is an impressive combination of hardware that functionally equates a mid-range gaming PC. The PSU is another indication of this, with a 245W supply, at least a few watts of which are provided to the aggressive cooling solution (using a ~112mm radial fan).

AMD’s newest driver pack should resolve player-reported issues of Destiny 2 crashes with AMD Vega hardware, including RX Vega 56 and RX Vega 64. The crash occurred during specific missions within Destiny 2, including the sixth mission (Exodus) and when nearing Nessus.

We received an email from AMD earlier notifying us of the new drivers, which can be found here.

As stated in the video intro, this benchmark contains some cool data that was exciting to work with. We don’t normally accumulate enough data to run historical trend plots across various driver or game revisions, but our initial Destiny 2 pre-launch benchmarks enabled us to compare that data against the game’s official launch. Bridging our pre-launch beta benchmarks with similar testing methods for the Destiny 2 PC launch, including driver changes, makes it easier to analyze the deviation between CPU, driver, and game code optimizations.

Recapping the previous tests, we already ran a wide suite of Destiny 2 benchmarks that included performance scaling tests in PvP multiplayer, campaign/co-op multiplayer, and various levels/worlds in the game. Find some of that content below:

NOTE: Our Destiny 2 CPU benchmark is now live.

Some of our original graphics optimization work also carried forward, allowing us to better pinpoint Depth of Field on Highest as one of the major culprits to AMD’s performance. This has changed somewhat with launch, as you’ll find below.

We’re sticking with FXAA for testing. Bungie ended up removing MSAA entirely, as the technique has been buggy since the beta, and left only SMAA and FXAA in its place.

UPDATE: We have run benchmarks of the launch version of Destiny 2. Please view the launch Destiny 2 GPU benchmarks here.

The Destiny 2 beta’s arrival on PC provides a new benchmarking opportunity for GPUs and CPUs, and will allow us to plot performance uplift once the final game ships. Aside from being a popular beta, we also want to know if Bungie, AMD, and nVidia work to further improve performance in the final stretch of time prior to the official October 24 launch date. For now, we’re conducting an exploratory benchmark of multiplayer versus campaign test patterns for Destiny 2, quality settings, and multiple resolutions.

A few notes before beginning: This is beta, first off, and everything is subject to change. We’re ultimately testing this as it pertains to the beta, but using that experience to learn more about how Destiny 2 behaves so that we’re not surprised on its release. Some of this testing is to learn about settings impact to performance (including some unique behavior between “High” and “Highest”), multiplayer vs. campaign performance, and level performance. Note also that drivers will iterate and, although nVidia and AMD both recommended their respective drivers for this test (385.41, 17.8.2), likely change for final release. AMD in particular is in need of a more Destiny-specific driver, based on our testing, so keep in mind that performance metrics are in flux for the final launch.

Note also: Our Destiny 2 CPU benchmark will be up not long after this content piece. Keep an eye out for that one.

Destiny 2 will serve as Bungie and Activision’s follow up to the first Destiny, which was exclusive to Playstation and Xbox consoles. Destiny 2 was announced as coming to PC a few months back, but few details were given at that time. Since then, on Thursday May, 18th, there was a livestream event discussing some features of the new game and showing the first official gameplay footage. If you missed the livestream, don’t worry -- we have you covered, we’ve posted the link to it and all the trailers below.

Activision CEO Bobby Kotick recently announced that the publisher allotted Bungie $500 million to make their next game, Destiny. To put this into perspective, Watch Dogs had a budget of $68 million, Battlefield 4 had a budget of nearly $100 million, and Grand Theft Auto V’s budget was a staggering $265 million. But if we’re using these games as examples, maybe Destiny’s $500 million budget starts to seems reasonable; after all, Watch Dogs is plagued by bugs, amongst its other substantial problems and Battlefield 4 has little to show for all the money spent on it. Meanwhile, Grand Theft Auto V’s previously massive-looking-budget earned the game a tremendous $1 billion in sales and -- compared to the other two -- it actually works! Money, then, surely must solve all problems.


We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge