NVIDIA’s Battlefront II Game Ready driver version 388.31 shipped this week in preparation for the game’s worldwide launch. In possibly more positive news for the vast number of redditors enraged by EA’s defense of grinding, the driver is also updated for Injustice 2 compatibility and boasts double-digit % performance increases in Destiny 2 at higher resolutions.

Battlefront 2 is the headliner for this driver release, but this chart is about all NVIDIA has to say on the subject for now:

Testing the Xbox One X for frametime and framerate performance marks an exciting step for GamersNexus. This is the first time we’ve been able to benchmark console frame pacing, and we’re doing so by deploying new, in-house software for analysis of lossless gameplay captures. At a very top-level, we’re analyzing the pixels temporally, aiming to determine whether there’s a change between frames. We then do some checks to validate those numbers, then some additional computational work to compute framerates and frametimes. That’s the simplest, most condensed version of what we’re doing. Our Xbox One X tear-down set the stage for this.

Outside of this, additional testing includes K-type thermocouple measurements from behind the APU (rear-side of the PCB), with more measurements from a logging plugload meter. The end result is an amalgamation of three charts, combining to provide a somewhat full picture of the Xbox One X’s gaming performance. As an aside, note that we discovered an effective Tcase Max of ~85C on the silicon surface, at which point the console shuts down. We were unable to force a shutdown during typical gameplay, but could achieve a shutdown with intentional torture of the APU thermals.

The Xbox One X uses an AMD Jaguar APU, which combines 40 CUs (4 more than an RX 480/580) at 1172MHz (~168MHz slower than an RX 580 Gaming X). The CPU component is an 8C processor (no SMT), and is the same as on previous Xbox One devices, just with a higher frequency of 2.3GHz. As for memory, the device is using 12GB of GDDR5 memory, all shared between the CPU and GPU. The memory operates an actual memory speed of 1700MHz, with memory bandwidth at 326GB/s. For point of comparison, an RX 580 offers about 256GB/s bandwidth. The Xbox One X, by all accounts, is an impressive combination of hardware that functionally equates a mid-range gaming PC. The PSU is another indication of this, with a 245W supply, at least a few watts of which are provided to the aggressive cooling solution (using a ~112mm radial fan).

AMD’s newest driver pack should resolve player-reported issues of Destiny 2 crashes with AMD Vega hardware, including RX Vega 56 and RX Vega 64. The crash occurred during specific missions within Destiny 2, including the sixth mission (Exodus) and when nearing Nessus.

We received an email from AMD earlier notifying us of the new drivers, which can be found here.

Our Destiny 2 GPU benchmark highlighted massive performance uplift vs. beta on some devices, upwards of 50% on Vega, but was conducted in largely GPU-constrained scenarios. For this content piece, we’ll be exploring the opposite: CPU-constrained scenarios to benchmark Destiny 2 performance on AMD Ryzen and Intel Kaby/Coffee Lake parts, including the R7 1700, R5 1600X, R3 1200, and i7-7700K, i5-7600K, i3-8350K, and G4560.

Most of our test notes have already been recapped in the GPU benchmark, and won’t be fully repeated. Again, we ran a wide spread of tests during the beta, which will be informing our analysis for the Destiny 2 launch benchmarks. Find the previous content below:

As stated in the video intro, this benchmark contains some cool data that was exciting to work with. We don’t normally accumulate enough data to run historical trend plots across various driver or game revisions, but our initial Destiny 2 pre-launch benchmarks enabled us to compare that data against the game’s official launch. Bridging our pre-launch beta benchmarks with similar testing methods for the Destiny 2 PC launch, including driver changes, makes it easier to analyze the deviation between CPU, driver, and game code optimizations.

Recapping the previous tests, we already ran a wide suite of Destiny 2 benchmarks that included performance scaling tests in PvP multiplayer, campaign/co-op multiplayer, and various levels/worlds in the game. Find some of that content below:

NOTE: Our Destiny 2 CPU benchmark is now live.

Some of our original graphics optimization work also carried forward, allowing us to better pinpoint Depth of Field on Highest as one of the major culprits to AMD’s performance. This has changed somewhat with launch, as you’ll find below.

We’re sticking with FXAA for testing. Bungie ended up removing MSAA entirely, as the technique has been buggy since the beta, and left only SMAA and FXAA in its place.

As we’ve done in the past for GTA V and Watch_Dogs 2, we’re now taking a look at Destiny 2’s texture resolution settings. Our other recent Destiny 2 content includes our GPU benchmark and CPU benchmark.

All settings other than texture resolution were loaded from the highest preset and left untouched for these screenshots. There are five degrees of quality, but only highest, medium, and lowest are shown here to make differences more obvious. The blanks between can easily be filled in.

UPDATE: We have run new CPU benchmarks for the launch of this game. Please view the Destiny 2 launch CPU benchmarks here.

Our Destiny 2 GPU benchmark was conducted alongside our CPU benchmark, using many of the same learnings from our research for the GPU bench. For GPU testing, we found Destiny 2 to be remarkably consistent between multiplayer and campaign performance, scaling all the way down to a 1050 Ti. This remained true across the campaign, which performed largely identically across all levels, aside from a single level with high geometric complexity and heavy combat. We’ll recap some of that below.

For CPU benchmarking, GN’s Patrick Lathan used this research (starting one hour after the GPU bench began) to begin CPU tests. We ultimately found more test variance between CPUs – particularly at the low-end – when switching between campaign and multiplayer, and so much of this content piece will be dedicated to the research portion behind our Destiny 2 CPU testing. We cannot yet publish this as a definitive “X vs. Y CPU” benchmark, as we don’t have full confidence in the comparative data given Destiny 2’s sometimes nebulous behaviors.

For one instance, Destiny 2 doesn’t utilize SMT with Ryzen, producing utilization charts like this:

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

  VigLink badge