This will be a quick one. There is some required viewing/reading before diving in: Previously, with the FFXV standalone benchmark release, we found significant culling deficiencies of objects in the game, including both GameWorks and non-GameWorks objects. This suggested overall inefficiency and hasty development, as opposed to some sort of malfeasance. Square Enix later tweeted rather direct acknowledgement of the benchmark’s issues, and began work to optimize the game (and the GameWorks integration) for launch.

Today’s test is a quick one. Square Enix launched a playable demo of Final Fantasy XV and, although it’s still not the complete game, we wanted to see if any of the object culling issues had been addressed. We were primarily interested in HairWorks LOD scaling, as that was previously an issue responsible for causing performance loss on both nVidia and AMD hardware – even when no HairWorks objects were anywhere remotely close to the player.

We recently published a deep-dive that discovered a lack of lower LOD scaling to HairWorks effects in FFXV, an issue we attributed to Square Enix and flagged to nVidia. We further noted that it wasn’t just GameWorks effects, but entire models were being drawn when miles away from the player. Following the report, Square Enix’s official FFXV twitter account (@FFXVEN) has released a series of tweets about the issue, noting: “A Level of Detail (LOD) issue has been discovered that affects the benchmark scores. The benchmark also suffers from stuttering; both of the issues will be addressed in the shipping game.”

Update: Square Enix is aware of this issue, has acknowledged its existence, and is working on an update for launch.

Although we don't believe this to be intentional, the Final Fantasy XV benchmark is among the most misleading we’ve encountered in recent history. This is likely a result of restrictive development timelines and a resistance to delaying product launch and, ultimately, that developers see this as "just" a benchmark. That said, the benchmark is what's used for folks to get an early idea of how their graphics cards will perform in the game. From what we've seen, that's not accurate to reality. Not only does the benchmark lack technology shown in tech demonstrations (we hope these will be added later, like strand deformation), but it is still taking performance hits for graphics settings that fail to materialize as visual fidelity improvements. Much of this stems from GameWorks settings, so we've been in contact with nVidia over these findings for the past few days.

As we discovered after hours of testing the utility, the FFXV benchmark is disingenuous in its execution, rendering load-intensive objects outside the camera frustum and resulting in a lower reported performance metric. We accessed the hexadecimal graphics settings for manual GameWorks setting tuning, made easier by exposing .INI files via a DLL, then later entered noclip mode to dig into some performance anomalies. On our own, we’d discovered that HairWorks toggling (on/off) had performance impact in areas where no hair existed. The only reason this would happen, aside from anomalous bugs or improper use of HairWorks (also likely, and not mutually exclusive), would be if the single hair-endowed creature in the benchmark were drawn at all times.

The benchmark is rendering creatures that use HairWorks even when they’re miles away from the character and the camera. Again, this was made evident while running benchmarks in a zone with no hairworks whatsoever – zero, none – at which point we realized, by accessing the game’s settings files, that disabling HairWorks would still improve performance even when no hairworks objects were on screen. Validation is easy, too: Testing the custom graphics settings file by toggling each setting, we're able to (1) individually confirm when Flow is disabled (the fire effect changes), (2) when Turf is disabled (grass strands become textures or, potentially, particle meshes), (3) when Terrain is enabled (shows tessellation of the ground at the demo start' terrain is pushed down and deformed, while protrusions are pulled up), and (3) when HairWorks is disabled (buffalo hair becomes a planar alpha texture). We're also able to confirm, by testing the default "High," "Standard," and "Low" settings, that the game's default GameWorks configuration is set to the following (High settings):

  • VXAO: Off
  • Shadow libs: Off
  • Flow: On
  • HairWorks: On
  • TerrainTessellation: On
  • Turf: On

Benchmarking custom settings matching the above results in identical performance to the benchmark launcher window, validating that these are the stock settings. We must use the custom settings approach, as going between Medium and High offers no settings customization, and also changes multiple settings simultaneously. To isolate whether a performance change is from GameWorks versus view distance and other settings, we must individually test each GameWorks setting from a baseline configuration of "High." 

Final Fantasy XV is shaping up to be intensely demanding of GPU hardware, with greater deltas developing between nVidia & AMD devices at High settings than Medium settings. The implication is that, although other graphics settings (LOD, draw distance) change between High and Medium, the most significant change is that of GameWorks options. HairWorks, Shadow libraries, and heavy ground tessellation are all toggled on with High and off with Medium. The ground tessellation is one of the most impactful to performance, particularly on AMD hardware; that said, although nVidia fares better, the 10-series GPUs still struggle with frametime consistency when running all the GameWorks options. This is something we’re investigating further, as we’ve (since writing this benchmark) discovered how to toggle graphics settings individually, something natively disabled in the FFXV benchmark. Stay tuned for that content.

In the meantime, we still have some unique GPU benchmarks and technical graphics analysis for you. One of our value adds is 1440p benchmarks, which are, for some inexplicable reason, disabled in the native FFXV benchmark client. We automated and scripted our benchmarks, enabling us to run tests at alternative resolutions. Another value-add is that we’re controlling our benchmarks; although it is admirable and interesting that Square Enix is collecting and aggregating user benchmark data, that data is also poisoned. The card hierarchy makes little sense at times, and that’s because users run benchmarks with any manner of variables – none of which are accounted for (or even publicly logged) in the FFXV benchmark utility.

Separately, we also confirmed with Square Enix that the graphics settings are the same for all default resolutions, something that we had previously questioned.

We’ve been working on our Final Fantasy XV benchmarking and already have multiple machines going, including both CPU and GPU testing. This process included discovery of run-to-run variance, pursuant to slow initialization of game resources during the first test pass. We can solve for this with additional test passes and by eliminating the first test pass from the data pool.

One of the downsides to Final Fantasy XV’s benchmark is that there is no customization for graphics settings: You’ve got High, “Middle,” and “Lite.” Critically, the medium settings seem to disable most of the nVidia GameWorks graphics options, which will impact performance between nVidia and AMD cards. We spoke with AMD about a driver update for the game, and have been informed that updated drivers will ship closer to the game’s launch. In the meantime, we’ll be testing High and Medium settings alike, building a database for relative performance scaling between AMD and nVidia. That content is due out soon.

While we’ve been working on programming our benchmark, reddit user “randomstranger454” grabbed Final Fantasy XV’s quality settings that create the presets. We will bold the settings we believe to be most interesting:

GDC 2016 marks further advancement in game graphics technology, including a somewhat uniform platform update across the big three major game engines. That'd be CryEngine (now updated to version V), Unreal Engine, and Unity, of course, all synchronously pushing improved game fidelity. We were able to speak with nVidia to get in-depth and hands-on with some of the industry's newest gains in video game graphics, particularly involving voxel-accelerated ambient occlusion, frustum tracing, and volumetric lighting. Anyone who's gained from our graphics optimization guides for Black Ops III, the Witcher, and GTA V should hopefully enjoy new game graphics knowledge from this post.

The major updates come down the pipe through nVidia's GameWorks SDK version 3.1 update, which is being pushed to developers and engines in the immediate future. NVidia's GameWorks team is announcing five new technologies at GDC:

  • Volumetric Lighting algorithm update

  • Voxel-Accelerated Ambient Occlusion (VXAO)

  • High-Fidelity Frustum-Traced Shadows (HFTS)

  • Flow (combustible fluid, fire, smoke, dynamic grid simulator, and rendering in Dx11/12)

  • GPU Rigid Body tech

This article introduces the new technologies and explains how, at a low-level, VXAO (voxel-accelerated ambient occlusion), HFTS (high-fidelity frustum-traced shadows), volumetric lighting, Flow (CFD), and rigid bodies work.

Readers interested in this technology may also find AMD's HDR display demo a worthy look.

Before digging in, our thanks to nVidia's Rev Lebaredian for his patient, engineering-level explanation of these technologies.

Joining us for this weekend's hardware news recap is Lyndell Chase, a new host for GN's weekend news segments and forthcoming feature videos. We couldn't have picked a more news-packed week to introduce a new co-host: AMD launched the R9 380X (reviewed), nVidia posted a Pascal update and virtual reality push, overvolting support was added for the Fury GPUs, and AC Syndicate / Battlefront launched.

The R9 380X was clearly the biggest news item of the week, something we spent a considerable amount of hours testing and reviewing. We remarked that the R9 380X would be a good buy at its price-point, proving a direct challenge to nVidia's GTX 960 mainstay. The rest of the news – Pascal especially – is all worth paying attention to, even if it's a little way out.

Here's the video recap!

We're currently in the process of GPU benchmarking Lords of the Fallen, a game that our own Nick Pinkerton previewed back at PAX Prime 2013. The game hosts impressive graphics technology in partial thanks to partnership with nVidia, who offer their GameWorks graphics SDK freely to game developers.

lords-of-fallen-1

Developers CI Games and Deck13 utilized GameWorks (detailed here) to introduce physics-responsive particle effects, soft body (cloth, fabric) physical effects, volumetric lighting that responds to transparency and surface opacity / reflectivity, and destructible environment effects.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge