Reviewing the AMD R7 2700X was done outside of normal review provisions, as AMD didn’t sample us. We’ve had the parts for a month now, and that has meant following development, EFI updates, and more as they’ve been pushed. We have multiple chips of every variety, and have been able to cross-validate as the pre-launch cycle has iterated. Because of the density of data, we’re splitting our content into multiple videos and articles.

Today’s focus will be the AMD R7 2700X and R7 2700 reviews, especially for live streaming performance versus the i7-8700K, gaming performance, and production (Blender) performance. Most importantly, however, we dedicate time to talk about the significant improvements that AMD has made in the volt-frequency department. At a given frequency, e.g. 4.0GHz, Ryzen 2000 operates at a heavily reduced voltage versus Ryzen 1. We’ll dig into this further in this review, but check back later for our R5 2600X and 2600 reviews (combined in one piece), including 2600X vs. 8600K streaming benchmarks. We’re also looking at VRM thermals, motherboard PCBs and their VRM quality, memory overclocking and scalability (in this content), and more.

There is a lot of confusion about AMD’s branding – Zen 2 vs. Ryzen 2 vs. Zen+. We’re calling these CPUs “Ryzen 2,” because they’re literally called “Ryzen 2X00” CPUs. This is not the same as the Zen 2 architecture, which is not out yet.

Note: For overclocking, we only OC one CPU of each core count – so just the R7 2700X or R7 2700, but beyond validation of maximum frequency, there’s no need to OC both and run each through 20 hours of testing.

Intel’s Hades Canyon NUC is well-named: It’s either a reference to hell freezing over, as AMD and Intel worked together on a product, or a reference to the combined heat of Vega and an i7 in a box that’s 8.5” x 5.5” in size. Our review of Hades Canyon looks at overclocking potential, preempting something bigger, and benchmarks the combined i7 CPU and Vega M GPU for gaming and production performance. We’re also looking at thermal performance and noise, as usual. As a unit, it’s one of the smallest, most-powerful systems on the consumer market get right now. We’ll see if it’s worth it.

There are two primary SKUs for the Intel NUC on Newegg, both coming out on April 30th. The unit which most closely resembles ours is $1000, and includes the Intel i7-8809G with 8MB of cache and a limited-core Turbo up to 4.2GHz. The CPU is unlocked for overclocking. It’s coupled with an AMD Vega M GH GPU with 4GB of high-bandwidth memory, also overclockable, but does not include memory or an SSD. You’re on your own for those, as it’s effectively a barebones kit. If you buy straight from Intel’s SimplyNUC website, the NUC8i7HVK that we reviewed comes fully-configured for $1200, including 8GB of DDR4 and a 128GB SSD with Windows 10. Not unreasonable, really.

Intel has slowly been deploying mitigations for Spectre/Meltdown for recent platforms. In the most recent microcode revision guidance, Intel has indicated it will not deploy any microcode mitigations for the recently disclosed flaws for older processor platforms. Intel cited the following reasons:

As we remarked back when we reviewed the i5-8400, launched on its lonesome and without low-end motherboard support, the Intel i5-8400 makes most sense when paired with B360 or H370 motherboards. Intel launched the i5-8400 and other non-K CPUs without that low-end chipset support, though, leaving only the Z370 enthusiast board on the frontlines with the locked CPUs.

When it comes to Intel chipset differences, the main point of comparison between B, H, and Z chipsets would be HSIO lanes – or high-speed I/O lanes. HSIO lanes are Intel-assigned per chipset, with each chipset receiving a different count of HSIO lanes. High-speed IO lanes can be assigned somewhat freely by the motherboard manufacturer, and are isolated from the graphics PCIe lanes that each CPU independently possesses. The HSIO lanes are as detailed below for the new 8th Generation Coffee Lake chipsets:

Intel has migrated its new i9 processor family to the portable market, or semi-portable, anyway. The i9-8950HK is an unlocked, overclockable 6C/12T laptop CPU, capable of turbo boosting to 4.8GHz when power and thermal budget permits.

The new i9-8950HK runs at a base clock of 2.9GHz, with single-core turbo boosting to 4.8GHz. We are unclear on what the all-core turbo boost max frequency is, but it’s clearly lower. TDP is rated at 45W, though note that this is more a measure of the cooling requirements and not the actual power consumption; that said, Intel’s TDP ratings almost always explicitly coincide with power consumption numbers. The 8950HK will move away from the quad-channel support of its desktop brethren, and instead move down to dual-channel memory at a base frequency of 2666MHz. Unlocked motherboards should theoretically permit higher memory speeds, though we are uncertain of the market options at this time.

Multi-core enhancement is an important topic that we’ve discussed before – right after the launch of the 8700K, most recently. It’ll become even more important over the next few weeks, and that’s for a few reasons: For one, Intel is launching its new B and H chipsets soon, and that’ll require some performance testing. For two, AMD is launching its Ryzen 2000 series chips on April 19th, and those will include XFR2. Some X470 motherboards, just like some X370 motherboards, have MCE equivalent options. For Intel and AMD both, enabling MCE means running outside of power specification, and therefore thermal spec of low-end coolers, and also running higher clocks than the stock configuration. The question is if any motherboard vendors enable MCE by default, or silently, because that’s where results can become muddy for buyers.

As noted, this topic is most immediately relevant for impending B & H series chipset testing – if recent leaks are to be believed, anyway. This is also relevant for upcoming Ryzen 2 CPUs, like the 2700X and kin, for their inclusion of XFR2 and similar boosting features. In today’s content, we’re revisiting MCE and Core Performance Boost on AMD CPUs, demonstrating the differences between them (and an issue with BIOS revision F2 on the Ultra Gaming).

A few days ago, we ran our most successful, highest-watched livestream in the history of GN. The stream peaked at >5300 concurrent viewers for around 2.5 hours, during which time we attempted to outmatch the LinusTechTips 3DMark score submitted to the 3DMark Hall of Fame. This was a friendly media battle that we decided to bring to LTT after seeing their submission, which briefly knocked us out of the Top 10 for the Hall of Fame. As noted in this recap video, we're not skilled enough to compete with the likes of K|NGP|N, dancop, der8auer, or similar pro XOCers, but we can certainly compete with other media. We made a spectacle of the event and pushed our i9-7980XE, our RAM, and our GPU (a Titan V) as far as our components would allow under ambient cooling. Ambient, by the way, peaked at ~30C during the stream; after the stream ended and room ambient dropped ~10C to 20C, our scores improved to 8285 in Timespy Extreme. This pushed us into 4th place on the 3DMark official Hall of Fame, and 3rd place in the HW Bot rankings.

The overclocking stream saw guest visits from Buildzoid of Actually Hardcore Overclocking, who assisted in tuning our memory timings for the final couple of points. We think there's more room to push here, but we'd like to keep some in the tank for a retaliation from Linus and team.

The past week of hardware news has been peculiarly busy for this time of year, with a deluge of news posting toward the latter half of last week. For major stories, [H]ardOCP’s coverage of nVidia’s GPP agreements has undoubtedly garnered among the most attention in the news cycle, with additional stories of interest covering hacks to get Coffee Lake CPUs functional in Z170 and Z270 motherboards.

We’ve got a couple of minor news items – new liquid coolers, a mini-review of a chair – and a couple of game industry items, like Valve’s return to game development.

Find the written and filmed recaps below:

“Intel & NVIDIA working together” will surely raise eyebrows, but this isn’t similar to how AMD and Intel recently worked to make Hades Canyon. Rather than work together on a product, the two companies sent high-ranking researchers and engineers to meet with the US Government, alongside numerous other AI and machine learning organizations. Intel and nVidia are the most relevant to our line of work, and the representatives at each organization worked to educate government officials on the needs of AI and machine learning development.

In addition to this news, Intel also is working on a $5B expansion for 10nm production, covered further down, and the company’s new Coffee Lake Pentium CPUs have been rumored and assigned specs.

Show notes below the video, if you prefer to read.

The past week has been abnormally packed with hardware news, with several heavy-hitter items from Intel and AMD partners alike. The headlining story highlights Intel's prototype dGPU unveil -- something that we won't see more of for years, if at all -- and talks Intel's initial plans for its dGPU component. This comes shortly after Intel's very public hiring of former RTG Chief Raja Koduri, who recently set to work on Intel's new dGPU division. It is likely that the prototype discussed has been in the works for a while, but Koduri's work will no doubt be visible in the coming years.

Other news items include the accidental publication of Intel Celeron CPUs by Newegg, including a new G49X0 series (G4920, G4900), and the non-K alternatives of the 8500 and 8600 i5 CPUs. For AMD, we saw news reports about an upcoming EKWB Threadripper Monoblock for MSI motherboards, which should be useful in full loop scenarios where the VRM thermals must be controlled. Several other news items are also present in this round-up. Find the show notes below.

Page 1 of 18

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge