The past week of hardware news has been peculiarly busy for this time of year, with a deluge of news posting toward the latter half of last week. For major stories, [H]ardOCP’s coverage of nVidia’s GPP agreements has undoubtedly garnered among the most attention in the news cycle, with additional stories of interest covering hacks to get Coffee Lake CPUs functional in Z170 and Z270 motherboards.

We’ve got a couple of minor news items – new liquid coolers, a mini-review of a chair – and a couple of game industry items, like Valve’s return to game development.

Find the written and filmed recaps below:

CPUs with integrated graphics always make memory interesting. Memory’s commoditization, ignoring recent price trends, has made it an item where you sort of pick what’s cheap and just buy it. With something like AMD’s Raven Ridge APUs, that memory choice could have a lot more impact than a budget gaming PC with a discrete GPU. We’ll be testing a handful of memory kits with the R5 2400G in today’s content, including single- versus dual-channel testing where all timings have been equalized. We’re also testing a few different motherboards with the same kit of memory, useful for determining how timings change between boards.

We’re splitting these benchmarks into two sections: First, we’ll show the impact of various memory kits on performance when tested on a Gigabyte Gaming K5 motherboard, and we’ll then move over to demonstrate how a few popular motherboards affect results when left to auto XMP timings. We are focusing on memory scalability performance today, with a baseline provided by the G4560 and R3 GT1030 tests we ran a week ago. We’ll get to APU overclocking in a future content piece. For single-channel testing, we’re benchmarking the best kit – the Trident Z CL14 3200MHz option – with one channel in operation.

Keep in mind that this is not a straight frequency comparison, e.g. not a 2400MHz vs. 3200MHz comparison. That’s because we’re changing timings along with the kits; basically, we’re looking at the whole picture, not just frequency scalability. The idea is to see how XMP with stock motherboard timings (where relevant) can impact performance, not just straight frequency with controls, as that is likely how users would be installing their systems.

We’ll show some of the memory/motherboard auto settings toward the end of the content.

This week's hardware news recap teases some of our upcoming content pieces, including a potential test on Dragonball FighterZ, along with pending-publication interviews of key Spectre & Meltdown researchers. In addition to that, as usual, we discuss major hardware news for the past few days. The headline item is the most notable, and pertains to Samsung's GDDR6 memory entering mass production, nearing readiness for deployment in future products. This will almost certainly include GPU products, alongside the expected mobile device deployments. We also talk AMD's new-hires and RTG restructure, its retiring of the implicit primitive discard accelerator for Vega, and SilverStone's new low-profile air cooler.

Show notes are below the embedded video.

While researching GPU prices and learning that GDDR5 memory price has increased by $20-$30 on the bill of materials lately, we started looking into the rising system memory prices. RAM pricing has proven somewhat cyclic over the past few years. We’ve reported on memory price increases dating back to 2012, and have done so seemingly every 2 years since that time. This research piece pulls five years of trend data, working in collaboration with PCPartPicker, to investigate why memory prices might be increasing, when we can expect a decrease, and more.

DRAM prices are crazy right now. We’ve driven that point into the ground over the past few years, but pinpointing a “when” and a “why” is a difficult proposition. With the help of PCPartPicker, we’ve identified some general trends that seem almost cyclic, and provide some relief in pointing toward an eventual downturn.

China’s National Development and Reform Commission (NDRC) is looking into the possibility of DRAM price-fixing between the major memory and Flash suppliers, with specific interest from the Pricing Supervision Department of said commission. An official from the regulatory body, Xu Xinyu of NDRC, stated the following: “We have noticed the price surge and will pay more attention to future problems that may be caused by ‘price fixing’ in the sector.”

This comes following recent reports that Samsung initiated plans to increase supply by 20%, which still failed to meet rising demand. The NDRC told the China Daily, a state-run media outlet, that the NDRC has paid attention to DRAM pricing and demand over the past 18 months, and that memory suppliers are now under the eye of the NDRC. There are only four major suppliers in the industry, and those include SK Hynix, Micron, Toshiba, and Samsung.

With the US Thanksgiving holiday right around the corner, sales and discounts have begun making it almost affordable to build a PC again after months of high prices. One component that has seen huge price increases over 2017 has been DRAM, with little respite over the months. We found some deals on DDR4 RAM this week, so if you are in the market for a new kit or an upgrade, this is good news. Additionally, if you are someone looking for a CPU to go with a new kit of RAM, consider checking out the recent AMD CPU sale article or the Best CPUs of 2017 article for more.

During a presentation at the USB Global Technology Conference, Intel indicated that the roadmap for Intel Optane DIMMs lands their proprietary memory somewhere in the second half of 2018. Thus far, we’ve seen the storage and caching side of Intel Optane 3D XPoint. It seems in 2018, we’ll be afforded the opportunity to witness 3D XPoint as main memory.

The latest report out of TrendForce and DRAMeXchange indicates that the already-high DRAM prices will continue to climb through 2018. Original shortages were accused of being fallout from impending Samsung and iPhone major launches this year, but new information points toward a slow-down in production out of the big three memory manufacturers (Samsung, Micron, SK Hynix). The three companies claim to be running R&D efforts for future technologies, but the fact that all three coincide does mean that each group can continue to enjoy exceptionally high margins into the future.

Variations of “HBM2 is expensive” have floated the web since well before Vega’s launch – since Fiji, really, with the first wave of HBM – without many concrete numbers on that expression. AMD isn’t just using HBM2 because it’s “shiny” and sounds good in marketing, but because Vega architecture is bandwidth starved to a point of HBM being necessary. That’s an expensive necessity, unfortunately, and chews away at margins, but AMD really had no choice in the matter. The company’s standalone MSRP structure for Vega 56 positions it competitively with the GTX 1070, carrying comparable performance, memory capacity, and target retail price, assuming things calm down for the entire GPU market at some point. Given HBM2’s higher cost and Vega 56’s bigger die, that leaves little room for AMD to profit when compared to GDDR5 solutions. That’s what we’re exploring today, alongside why AMD had to use HBM2.

There are reasons that AMD went with HBM2, of course – we’ll talk about those later in the content. A lot of folks have asked why AMD can’t “just” use GDDR5 with Vega instead of HBM2, thinking that you just swap modules, but there are complications that make this impossible without a redesign of the memory controller. Vega is also bandwidth-starved to a point of complication, which we’ll walk through momentarily.

Let’s start with prices, then talk architectural requirements.

Where video cards have had to deal with mining cost, memory and SSD products have had to deal with NAND supply and cost. Looks like video cards may soon join the party, as – according to DigiTimes and sources familiar with SK Hynix & Samsung supply – quotes in August increased 30.8% for manufacturers. That’s a jump from $6.50 in July to $8.50 in August.

It sounds as if this stems from a supply-side deficit, based on initial reporting, and that’d indicate that products with a higher count of memory modules should see a bigger price hike. From what we’ve read, mobile devices (like gaming notebooks) may be more immediately impacted, with discrete cards facing indeterminate impact at this time.

Page 1 of 3

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge