It’s been an interesting week or so for hardware and technology news alike, with Nvidia and LastPass making waves. Nvidia is attempting to stem the flow of GPUs to miners by artificially limiting the hashing power of its upcoming RTX 3060 GPUs, as well as announcing its new CMP HX line of dedicated mining cards. 

LastPass, makers of the popular LastPass password manager, have announced some abrupt and contentious changes to its free plan, much to the chagrin of its users. 

At GN, we recently looked at various Xbox Series X thermals, including memory, SoC, and VRM temperatures. We also reviewed the Arctic Liquid Freezer II 420 AIO, and discovered that frequently entering "Arctic 420" into search engines makes for some interesting targeted ads that aren’t about CPU cooling.

Hardware news always slows slightly before Computex, but the industry still seems to be operating at full bore. If you're not already tuned-in, be sure to pay attention during June 4th to June 11th (or thereabouts) for major news from all aspects of the industry. Computex will be in full swing then, and there's always some straggler (and some early) coverage that's worth checking. We'll be at the show for its duration, plus some time for a short trip to Japan.

This week's hardware news recap can be found in video form below, or if you prefer written articles, we have the show notes below that. The anchor item for the week is Sony's PlayStation 5 and its potential usage of Zen architecture CPUs.

We’re revisiting a topic from July 2017, initially published in the middle of one of last year’s cryptocurrency booms. That topic was our discussion with GPU add-in board partners and PSU makers, where we collected anonymized, aggregate thoughts on cryptomining and its impact on the consumer GPU market. Given the tremendous growth of the cryptocurrency community in the time since, and the recent explosion of GPU prices up to 3-5x their MSRP (depending on if it’s a primary or secondary seller), we decided it was time to revisit the topic once more.

This information is anonymized and aggregated for a few reasons: One, no one would be able to share their thoughts otherwise, as this isn’t a topic that can be officially approached; two, it allows folks to speak more freely, as if there were an official response, you can be assured it’d tread the line of neutrality to a point of being bereft of insight. We spoke to most of the major GPU board partners and some PSU maker representatives, including the original group of folks we spoke with in mid-2017, now back to re-evaluate their positions from six months ago.

Vega 64 may consume more power than a GTX 1080, but until now, we haven’t known if that impact is relevant to room temperature. That’s what we wanted to know, and we eventually expanded that concept to include how much a 900W+ mining machine increases room temperature, a 600W machine, and so on. We were able to effectively replace any need of a heater for the past week, and right when it started to get colder.

In this test, we’re looking at the room ambient impact of various PC builds. This helps to conceptualize the real-world impact of all those power and thermal tests you see us (and others) publish, as it puts real numbers to the user experience outside of the case. Although this concept has about a million variables and “what ifs,” we controlled to the best of our abilities, are laying-out all the major variables, and can present an academic experiment that demonstrates room temperature increase from computer equipment. All watts are basically created equal, for the purposes of this test: A 940W mining rig will output just as much heat into the room as a 940W gaming rig, or a 940W rendering machine, and so forth; as long as the power load is equal between all of these (read: constant), watts are watts, and you can extrapolate room temperature for each type of machine.

The testing originally was concepted after our Vega 56 Hybrid mod, which used power mods and other mods to push the card up towards 400W of power consumption. We wanted to test a straight Vega 56 versus GTX 1070 for room ambient impact, but shifted that up a tier (to Vega 64 and a GTX 1080) for some parts that are more likely to show a difference. After that, we shifted up to a 940W mining machine, then picked a middle-ground ~600W machine (which could also represent SLI gaming or HEDT render systems).

It’s illegal to outright fix prices of products. Manufacturers have varying levels of sway when establishing cost to distributor partners and suggested retail prices, acted on much lower in the chain, and have to produce supply based on expectations of demand. We’ve previously talked about how MDF or other exchanges can be used to inspire retailers to work within some guidelines, but there are limits to the financial and legal extension of those means.

This context in mind, it makes sense that the undertone of discussion pertaining to video card prices – not just AMD’s, but nVidia’s – plants much of the blame squarely on retailers. There’s only so much that AMD and nVidia can do to drive prices at least somewhat close to MSRP. One of those actions is to put out more supply to sate demand but, as we saw during the last mining boom & bust (with emergent ASIC miners), there’s reason for manufacturers to remain hesitant of a major supply commitment. If AMD or nVidia were to place a large order with their fabs, there’d better be some level of confidence that the product will sell. Factory-to-shelf turn-around is a period of months, weeks of which can be shipping (unless opting for prohibitively expensive air freight).  A period of months is a wide window. We’ve seen mining markets “crash” and recover in a period of days, or hours, with oft unpredictable frequency and intensity. That’d explain why AMD might be hesitant to issue large orders of older product, like the RX 500 series, to try and meet demand.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

  VigLink badge