This week, we have news on AMD and Valve striking a partnership that hopefully leads to better CPU drivers for Linux, as both companies will be working together to optimize the playing experience on the Steam Deck. Also in AMD news is the company's updated Radeon Pro W6000X-Series of GPUs, which probably aren’t that exciting if you’re not a Mac Pro user.

Moving on, we also have updates on SK Hynix’s purchase of Intel’s NAND flash business, as well as developments regarding the Nvidia-Arm deal. There’s also some Windows 11 news as it relates to TPM 2.0 supported motherboards, a new Steam survey to go over, Sony’s PS5 becoming profitable, and more.

News article and video embed below, as usual.

This week's news talks about the Beast Canyon NUC, Noctua's NH-P1 cooler, Xbox consoles getting AMD FidelityFX Super Resolution and other topics, like a potential SiFive buyout by Intel.

At GN, we’ve been busy reviewing Nvidia’s latest additions to its RTX 30-series. If you haven’t already, check out our RTX 3080 Ti review and RTX 3070 Ti review.

As we enter 2021 and head towards CES, the pace of news has picked up considerably. To start 2021 of in earnest, we have Linus Torvalds with one of his classic diatribes, this time targeting Intel and ECC memory. Rising cryptocurrency prices are also cause for concern, as they could be forecasting a GPU market like that of 2018. Admittedly, the GPU market already isn’t in a great place, but skyrocketing Bitcoin and Etherum prices won’t help that.

We also have AMD news on a new patent as well as new AGESA microcode updates. There’s an inderting blunder on Gigabyte’s part that seemingly outed Intel’s Rocket Lake release date, NZXT revising its recalled H1 case, and more. 

As we begin the new year, GN is easing back into our more regular content schedule after an end-of-year respite. We recently reviewed the Scythe FUMA 2, Fractal Meshify 2 XL case, and you can find our coverage of the big Intel, AMD, and NVIDIA news from this week on our channel.

The last time we worked with Zalman on a review ended with the company offering to "buy advertising" in exchange for us taking down the review. That was for the company’s Zalman R1 case, which we published in 2015 and which is still live. That was just 6 months after Zalman defaulted on a ~3 billion won loan and had its export and accounting documents forged by its parent company, done to fake higher profits than reality and receive large bank loans. That phone call we received was also right around the time that Zalman’s former parent company, Moneaul, had its CEO sentenced to a record-setting 23 years in prison in Korea for defrauding banks for loans. The parent company owed over $31 million USD in damages, folded, and left Zalman unsupervised to try and fix its reputation.

Zalman apparently thought that offering to buy $500 of advertisements in exchange for taking a review down was a good way to do that, and so we swore them off and never worked with them again. We wrote about this around the time it happened, but did not name Zalman directly at time of writing. It was more of a warning shot to the industry not to engage in that sort of behavior. In the time since, Zalman has changed ownership and its PR and marketing staff has changed, so we’re willing to give them another shot. We can’t ever forget what functionally amounted to, in our opinion, an attempted bribe to take down a negative review, but we can try to look at Zalman as a new company. That’s what it claims to be, anyway. The company’s newest product is its CNPS 20X tower cooler, which we've purchased for review today against other big air coolers and liquid coolers. Competing products include the Noctua NH-D15, Deep Cool Assassin III, Corsair A500 (if you can call it “competition”), and Arctic Liquid Freezer II 280.

We’ve got a lot of thermal performance in a highly-controlled test environment today, but we need to start with the marketing of this cooler, which makes some fantastical claims.

Back when Ryzen 3000 launched, there was reasonable speculation founded in basic physics that the asymmetrical die arrangement of the CPUs with fewer chiplets could have implications for cooler performance. The idea was that, at the root of it, a cooler whose heatpipes aligned to fully contact above the die would perform better, as opposed to one with two coolers sharing vertical contact with the die. We still see a lot of online commentary about this and some threads about which orientation of a cooler is “best,” so we thought we’d bust a few of the myths that popped-up, but also do some testing on the base idea.

This is pretty old news by now, with much of the original discussion starting about two months ago. Noctua revived the issue at the end of October by stating that it believed there to be no meaningful impact between the two possible orientations of heatpipes on AM4 motherboards, but not everyone has seen that, because we’re still getting weekly emails asking us to test this hypothesis.

We’re revisiting one of the best ~200mm-ish fans that existed: The SilverStone Air Penetrator 180, or AP181, that was found in the chart-topping Raven02 case that we once held in high regard. We dug these fans out of our old Raven, still hanging around post-testing from years ago, and threw them into a test bench versus the Noctua 200mm and Cooler Master 200mm RGB fans (the latter coming from the H500P case).

These three fans, two of which are advertised as 200mm, all have different mounting holes. This is part of the reason that 200mm fans faded from prominence (the other being replacing mesh side panels with a sheet of glass), as companies were all fighting over a non-standardized fan size. Generally speaking, buying a case with 200mm fans did not – and still does not – guarantee that other 200mm fans will work in that case. The screw hole spacing is different, the fan size could be different, and there were about 4 types of 200mm-ish fans from the time: 180mm, 200mm, 220mm, and 230mm.

That’s a large part of the vanishing act of the 200mm fans, although a recent revival by Cooler Master has resurrected some interest in them. It’s almost like a fashion trend: All the manufacturers saw at Computex that 200mm fans were “in” again, and immediately, we started seeing CES 2018 cases making a 200mm push.

The revolution of 200mm fans was a short-live one. Large fans are still around, but the brief, bombastic era of sticking a 200mm fan in every slot didn’t last long: The CM HAF X, NZXT Phantom 820, SilverStone Raven 02 (180mm), Throne & Thor, and 500R all have designs that have largely been replaced in the market. That replacement comes in the form of an obsession with the word “sleek” in marketing materials, which generally means flat, unvented paneling that would conflict with the poorer static pressure performance of large fans. That’s not to say 200mm fans are inherently good or bad, just that the industry has trended away from them.

That is, until the Cooler Master H500P, which runs 2x MasterFan MF200R units dead-center, fully garnished with RGB LEDs. We didn’t necessarily like the H500P in its stock configuration (but did fix it), but we know the case is popular, and it’s the best test bench for 200mm fans. There’s a good chance that purchasers of the NF-A20 are buying them for the H500P.

And that’s what we’re reviewing today. In this benchmark, we’re reviewing the Noctua NF-A20 200mm fans versus the Cooler Master MasterFan MF200Rs, which come stock with the H500P. The MF200R fans will almost certainly become available separately, at some point, but presently only ship with the H500P.

We’re reviewing the 360mm Enermax TR4 Liqtech cooler today, matched-up against the 240mm variant and with a special appearance from the Noctua NH-U14S TR4 unit. We previously benchmarked the Enermax Liqtech 240 TR4 closed-loop liquid cooler versus the Noctua NH-U14S, resulting in somewhat interesting findings. The larger version of the Liqtech, the 360mm cooler, is now on the bench for comparison with an extra fan and a wider radiator. The NH-U14S returns, as does the X62 (mostly to demonstrate smaller coldplate performance).

We’re still using our 1950X CPU on the Zenith platform, overclocked to 4.0GHz at 1.35Vcore. The point of the OC isn’t to drive the highest possible clock, but to generate a larger power load out of the CPU (thus stressing to a point of better demonstrating performance deltas).

At time of publication, the Enermax Liqtech 240 TR4 is priced at ~$130, with the 360 at ~$150, and with the NH-U14S at ~$80.

This testing kicked-off because we questioned the validity of some cooler testing results that we saw online. We previously tested two mostly identical Noctua air coolers against one another on Threadripper – one cooler had a TR4-sized plate, the other had an AM-sized plate – and saw differences upwards of 10 degrees Celsius. That said, until now, we hadn’t tested those Threadripper-specific CPU coolers versus liquid coolers, specifically including CLCs/AIOs with large coldplates.

The Enermax Liqtech 240 TR4 closed-loop liquid cooler arrived recently, marking the arrival of our first large coldplate liquid cooler for Threadripper. The Enermax Liqtech 240 TR4 unit will make for a more suitable air vs. liquid comparison versus the Noctua NH-U14S TR4 unit and, although liquid is objectively better at moving heat around, there’s still a major argument on the front of fans and noise. Our testing includes the usual flat-out performance test and 40dBA noise-normalized benchmarking, which matches the NH-U14S, NH-U12S, NZXT Kraken X62 (small coldplate), and Enermax Liqtech 240 at 40dBA for each.

This test will benchmark the Noctua NH-U14S TR4-SP3 and NH-U12S TR4-SP3 air coolers versus the Enermax Liqtech 240 TR4 & NZXT Kraken X62.

The units tested for today include:

Before Vega buried Threadripper, we noted interest in conducting a simple A/B comparison between Noctua’s new TR4-sized coldplate (the full-coverage plate) and their older LGA115X-sized coldplate. Clearly, the LGA115X cooler isn’t meant to be used with Threadripper – but it offered a unique opportunity, as the two units are largely the same aside from coldplate coverage. This grants an easy means to run an A/B comparison; although we can’t draw conclusions to all coldplates and coolers, we can at least see what Noctua’s efforts did for them on the Threadripper front.

Noctua’s NH-U14S cooler possesses the same heatpipe count and arrangement, the same (or remarkably similar) fin stack, and the same fan – though we controlled for that by using the same fan for each unit. The only difference is the coldplate, as far as we can tell, and so we’re able to more easily measure performance deltas resultant primarily from the coldplate coverage change. Noctua’s LGA115X version, clearly not for TR4, wouldn’t cover the entire die area of even one module under the HIS. The smaller plate maximally covers about 30% of the die area, just eyeballing it, and doesn’t make direct contact to the rest. This is less coverage than the Asetek CLCs, which at least make contact with the entire TR4 die area, if not the entire IHS. Noctua modified their unit to equip a full-coverage plate as a response, including the unique mounting hardware that TR4 needs.

The LGA115X NH-U14S doesn’t natively mount to Threadripper motherboards. We modded the NH-U14S TR4 cooler’s mounting hardware with a couple of holes, aligning those with the LGA115X holes, then routed screws and nuts through those. A rubber bumper was placed between the mounting hardware and the base of the cooler, used to help ensure even and adequate mounting pressure. We show a short clip of the modding process in our above video.

Page 1 of 2

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

  VigLink badge