HW News - Definitely-Real Intel Arc GPU, Right to Repair Laws, & Apple M1 Vulnerabilities
Hardware news this week is flooded with silicon updates, but also features good news on the Right to Repair front.
We'll be recapping AMD's delidded Zen 4 CPU (Ryzen 7000), Intel's singular Arc GPU that "shipped," NVIDIA's first HBM3 GPU, and Apple's M1 vulnerability. Plenty more below!
HW News - Major CPU Vulnerabilities, NVIDIA RTX 40 GPUs, Intel i3 Competition
Hardware news this week talks about vulnerabilities found and patched on several AMD and Intel motherboards, including Gigabyte and ASUS boards. We'll also be talking about NVIDIA's Lovelace GPUs (RTX 40 series), competition to Intel's in-bound i3 CPUs (via AMD), Montech taking GN criticism seriously, and more.
Article below the video.
HW News - RGB Software Steals Crypto, Ryzen Gains Market Share, DDR5 Due Q3
Another busy week in hardware news as we settle into the month of May. We have substantial news items from Intel, as the company continues to explore fab options in Europe. Additionally, Intel is ratcheting up its fab investments, and possibly looking to sell off its Sport Technology Group, which is home to its True View tech. Rounding-out the headline stories is IBM announcing a breakthrough in “2nm” semiconductors using nanosheet FETs.
In slightly lesser news, TSMC is deploying AMD’s Epyc CPUs in the data centers that not only power its R&D, but its manufacturing as well -- a bragging point for AMD, to be sure. There’s also news regarding Arm, Sony, Steam, and more.
At GN, we recently reviewed Cooler Master’s MF700 case, in addition to reviewing the Phanteks P360A case. Spoiler alert: Only one of those cases impressed us. We also dove into a decade’s worth of GPU data from AMD and Nvidia to discuss price creep, release patterns, and greed.
HW News - NVIDIA Adds 'Smart Access Memory' Counter, Zen 3 Delid, Intel Add-in GPU
Hardware news this week has been busy, once again, slotting right in between silicon product releases. Our AMD Ryzen 5000 coverage is mostly done, but we're now ramping into RX 6000 GPU coverage. While preparing work for the RX 6800 XT (and subsequent) GPU launches, we opened a dialogue with NVIDIA to ask about a potential PCIe resizable BAR implementation as a counter to AMD's SAM. That's our leading story for this one, followed-up by some coverage of the Zen 3 delidding work done recently, Intel's add-in GPU for servers, and more.
HW News - FCC Forced to Release Server Logs, NVIDIA 5nm & AMD 5nm, RTX Ampere, Ryzen Pro 4000
Before beginning this week's hardware news recap, we'd like to highlight for our readers -- or those who just prefer referencing our articles rather than scrubbing through videos at a later date -- that we've been making a bigger push to publish written content to the site lately. This site serves almost more as an archive for the scripts than anything else these days, just because the nature of maintaining it is very difficult given our current working hours, but we like it and we know that all of you like the written format. We've made an active effort in increasing how many of our videos (from YouTube) end up on the website in written form, so we published the AMD Ryzen 3 3100 review, Ryzen 3 3300X review, and our B550 vs. X570 (et al) chipset comparison. Check them out on the home page.
In the meantime, we've got a lot of hardware news for the week to recap: The FCC is being forced to reveal its server logs for concerns stemming from fake comments about net neutrality, NVIDIA and AMD are vying over 5nm supply from fab TSMC, RTX Ampere is getting an announcement this week, Intel Alder Lake and LGA1700 are in the rumor mill, and more.
AMD Ryzen 3 3300X CPU Review vs. 3100 Benchmarks: An R3 is Enough for Gaming & Clock-for-Clock
This is the big one: In this review, we’re benchmarking the AMD R3 3300X $120 CPU, but we’re specifically interested in the real-world impact of the CCX-to-CCX communication latency in the Ryzen 3 3100 versus the Ryzen 3 3300X at the same overclocked frequency of 4.4GHz. It’s massive in some instances, beyond 20%, and eliminates the ability to just overclock the otherwise identical 3100 to meet the 3300X performance for cheaper. As discussed in our Ryzen 3 3100 review that’s already live, the 3300X runs a 4+0 core configuration with everything on one CCD, on one CCX, while the 3100 runs a 2+2 configuration on two CCXs on that CCD. We’re going to look at how much that impacts performance, but also review the 3300X versus basically every other current CPU, and a few older ones.
Today we’re reviewing the AMD R3 3100 and Ryzen 3 3300X, but we have a dedicated content piece for the AMD R3 3300X because we added benchmarks for the two CPUs at the same frequency, exposing the latency difference between them. For this specific article and video, we’re focusing all of our attention on the AMD R3 3100 CPU at $100, potentially a high-volume part for budget PC builds. That includes overclocking, power consumption, gaming benchmarks, frequency analysis, production workloads (Premiere, Photoshop, compile, et al.), and more. Our AMD Ryzen 3 3300X review will post within a couple of hours on this one (on YouTube, at least, if not also on the site), and that’ll feature head-to-head 4.4GHz overclocks on the R3 3100 vs. R3 3300X, where the 3300X’s 4+0 core CCX configuration can be tested for its real-world latency impact versus the 2+2 3100.
Writing this review, it felt like we were writing a review script from the same era as the 7700K, and not just because AMD is positioning itself against the 2017 CPU. Back when we reviewed the 7700K, all the comparisons were to the 6700K, the 4790K, the 2600K – the theme was that it was all intra-brand competition. The same is happening now, where we’re throwing a few Intel names out there as comparisons, but until the 10-series, AMD really is just competing against itself. It’s fascinating in a way, because from a reviewer and editorial standpoint, it really does feel like dejavu – except it’s a different company in 2020. The new AMD Ryzen 3 3100 and 3300X CPUs have a release date set for May 21, 2020, with the Intel 10th “Gen” release date set for May 20, 2020.
AMD Ryzen Heatpipe Orientation Benchmark & Cooler Myths
Saturday, 21 December 2019Back when Ryzen 3000 launched, there was reasonable speculation founded in basic physics that the asymmetrical die arrangement of the CPUs with fewer chiplets could have implications for cooler performance. The idea was that, at the root of it, a cooler whose heatpipes aligned to fully contact above the die would perform better, as opposed to one with two coolers sharing vertical contact with the die. We still see a lot of online commentary about this and some threads about which orientation of a cooler is “best,” so we thought we’d bust a few of the myths that popped-up, but also do some testing on the base idea.
This is pretty old news by now, with much of the original discussion starting about two months ago. Noctua revived the issue at the end of October by stating that it believed there to be no meaningful impact between the two possible orientations of heatpipes on AM4 motherboards, but not everyone has seen that, because we’re still getting weekly emails asking us to test this hypothesis.
AMD Ryzen TDP Explained: Deep-Dive on TDP Definitions & What Cooler Manufacturers Think
Sunday, 20 October 2019Thermal Design Power, or TDP, is a term used by AMD and Intel to refer in an extremely broad sense to the rate at which a CPU cooler must dissipate heat from the chip to allow it to perform as advertised. Sort of. Depending on the specific formula and product, this number often ends up a combination of science-y variables and voodoo mysticism, ultimately culminating in a figure that’s used to beat-down forum users over which processor has a lower advertised “TDP”. With the push of Ryzen 3000, we’re focusing today on how AMD defines TDP and what its formula actually breaks into, and how that differs from the way cooler manufacturers define it. Buying a 95W TDP processor and a 95W TDP CPU cooler doesn’t mean they’re perfectly matched, and TDP is a much looser calculation than most would expect. There’s also contention between cooler manufacturers and CPU manufacturers over how this should be accurately calculated versus calculated for marketing, something we’ll explore in today’s content.
This content comes from an earlier-published feature-length video we made. We don’t really make any profit on the articles, but maintain them anyway as a point of reference. If you’d like to support deep-dive, long-form content like this, please consider supporting us the following ways:
- Watching the video is a great way, but we know that you’re here because you prefer reading! It’s faster, after all
- Grabbing a GamersNexus GPU Disassembly Toolkit, an anti-static GN Modmat (available in medium & classic large), T-shirt, GPU anatomy poster, glassware, or other merch to support us
- Contributing to our efforts on Patreon
The article continues after the embedded video. Please note that some off-the-cuff/unscripted commentary will not be ported to the article, so you may miss on some commentary, but most of it is here.
HW News - RDNA 2, Zen 3 Roadmap, 6000MHz Memory Overclock, & Threadripper Chiplets
Other than announcing our upcoming collaborative stream with overclocker Joe Stepongzi (Bearded Hardware), we're also talking Threadripper specification leaks, 6000MHz memory overclocking, RDNA 2 and Zen 3 roadmap information, and smaller items. For us, though, we're excited to announce that we're streaming some liquid nitrogen extreme overclocks with AMD parts this weekend. We haven't run both the 5700 XT and 3900X under liquid nitrogen at the same time, so we'll be doing that on Sunday (9/15) at 1PM Eastern Time (NYC time). On Saturday (9/14), we'll be streaming the efforts to overclock just the 3900X under liquid nitrogen. Joe Stepongzi, pro overclocker with a decade of experience in the 'sport,' will be joining us to help run the show.
We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.