We’re resurrecting our AMD RX Vega 56 powerplay tables mod to challenge the RTX 2070, a card that competes in an entirely different price class. It’s a lightweight versus heavyweight boxing match, except the lightweight has a gun.

For our Vega 56 card, priced at between $370 and $400, depending on sales, we will be shoving an extra 200W+ of power into the core to attempt to match the RTX 2070’s stock performance. We strongly praised Vega 56 at launch for its easily modded nature, but the card has faced fierce competition from the 1070 Ti and 1070. It was also constantly out of stock or massively overpriced throughout the mining boom, which acted as a death knell for Vega throughout the mining months. With that now dying down and Vega becoming available for normal people again, pricing is competitive and compelling, and nVidia’s own recent fumbles have created an opening in the market.

We will be working with a PowerColor RX Vega 56 Red Dragon card, a 242% power target, and matching it versus an EVGA RTX 2070 Black. The price difference is about $370-$400 vs. $500-$550, depending on where you buy your parts. We are using registry entries to trick the Vega 56 card into a power limit that exceeds the stock maximum of +50%, allowing us to go to +242%. This was done with the help of Buildzoid last year.

One final note: We must warn that we aren’t sure of the long-term impact of running Vega 56 with this much power going through it. If you want to do this yourself, be advised that long-term damage is a possibility for which we cannot account.

We always like to modify the reference cards – or “Founders Edition,” by nVidia’s new naming – to determine to what extent a cooler might be holding it back. In this instance, we suspected that the power limitations may be a harder limit than cooling, which is rather sad, as the power delivery on nVidia’s RTX 2080 Ti reference board is world-class.

We recently published a video showing the process, step-by-step, for disassembling the Founders Edition cards (in preparation for water blocks). Following this, we posted another piece wherein we built-up a “Hybrid” cooling version of the card, using a mix of high-RPM fans and a be quiet! Silent Loop 280 CLC for cooling the GPU core on a 2080 Ti FE card. Today, we’re summarizing the results of the mod.

NVidia’s Turing architecture has entered the public realm, alongside an 83-page whitepaper, and is now ready for technical detailing. We have spoken with several nVidia engineers over the past few weeks, attended the technical editor’s day presentations, and have read through the whitepaper – there’s a lot to get through, so we will be breaking this content into pieces with easily navigable headers.

Turing is a modified Volta at its core, which is a heavily modified Pascal. Core architecture isn’t wholly unrecognizable between Turing and Pascal – you’d be able to figure out that they’re from the same company – but there are substantive changes within the Turing core.

We had an opportunity to disassemble multiple EVGA RTX video cards, including the EVGA RTX 2080 and RTX 2080 Ti, the latter featuring assistance from Der8auer of Caseking’s booth. Our coverage is still going live as we edit, render, and upload, but the immediate news item pertains to die size.

The hardware move didn't slow down for our move, it turns out. HW News for the past week includes a major focus on GV104 & GV102-branded GPUs listed in AIDA64's Device ID database, new R3 2000-series CPUs shown by Lenovo, Threadripper 2's specs, TSMC shutting down for a virus, and more. This is also our first video shot in the new space (though we're still doing sound treatment, so there's a bit of echo). 

At GTC 2018, we learned that SK Hynix’s GDDR6 memory is bound for mass production in 3 months, and will be featured on several upcoming nVidia products. Some of these include autonomous vehicle components, but we also learned that we should expect GDDR6 on most, if not all, of nVidia’s upcoming gaming architecture cards.

Given a mass production timeline of June-July for GDDR6 from SK Hynix, assuming Hynix is a launch-day memory provider, we can expect next-generation GPUs to become available after this timeframe. There still needs to be enough time to mount the memory to the boards, after all. We don’t have a hard date for when the next-generation GPU lineup will ship, but from this information, we can assume it’s at least 3 months away -- possibly more. Basically, what we know is that, assuming Hynix is a launch vendor, new GPUs are nebulously >3 months away.

The latest Ask GN brings us to episode #70. We’ve been running this series for a few years now, but the questions remain top-notch. For this past week, viewers asked about nVidia’s “Ampere” and “Turing” architectures – or the rumored ones, anyway – and what we know of the naming. For other core component questions, Raven Ridge received a quick note on out-of-box motherboard support and BIOS flashing.

Non-core questions pertained to cooling, like the “best” CLCs when normalizing for fans, or hybrid-cooled graphics VRM and VRAM temperatures. Mousepad engineering got something of an interesting sideshoot, for which we recruited engineers at Logitech for insight on mouse sensor interaction with surfaces.

More at the video below, or find our Patreon special here.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge