Early reports surrounding Vega GPU packaging indicated minimally two different package processes, though later revealed a potential third. For the two primary forms of Vega GPU packaging, we’re looking at clear, obvious differences in assembly: The silicon (GPU + HBM) is either encased in an epoxy resin (“molded”) or is not encased at all (“resinless”). There is another type of resinless package that has been shown online, but we haven’t yet encountered this third type.

The initial concern indicated that packaging process could impact HBM2 contact to cooler coldplates – something for which, after working on this content, we later discovered new data – and we wanted to test that mounting pressure. Just last night, days after we finalized this content piece, we found another data point that deserves a separate article, so be sure to check back for the follow-up to this piece.

In the meantime, we’re using a chemically reactive contact paper to test various Vega GPUs and vapor chambers or coolers, then swapping coolers between those various GPUs to try and understand if and when differences emerge. Some brief thermal testing also helps us validate whether those differences, which would theoretically be spurred-on by packaging variance, are actually relevant to thermal performance. Today, we’re testing to see the mounting pressure and thermal impact from AMD’s various Vega 56 & 64 GPU packages, with a brief resurrection of the Frontier Edition.

Note: We used torque drivers for the assembly, so that process was controlled for.

AMD-exclusive partner XFX announced its competition to ASUS' still might-be-out-some-day-maybe Vega 64 Strix video card. At this point in time, partner cards still feel something like super cars: Nice to look at, probably won't own it.

But they're coming, so we're told, and the new target time seems to be "sometime in November." AMD partners have largely indicated supply issues of the Vega GPUs as the limiting factor of card presence on the market. The supply should build-up at some point, it's just a matter of if partners can secure a restock date to build confidence with retailers and distributors.

AMD’s newest driver pack should resolve player-reported issues of Destiny 2 crashes with AMD Vega hardware, including RX Vega 56 and RX Vega 64. The crash occurred during specific missions within Destiny 2, including the sixth mission (Exodus) and when nearing Nessus.

We received an email from AMD earlier notifying us of the new drivers, which can be found here.

AMD’s High-Bandwidth Cache Controller protocol is one of the keystones to the Vega architecture, marked by RTG lead Raja Koduri as a personal favorite feature of Vega, and highlighted in previous marketing materials as offering a potential 50% uplift in average FPS when in VRAM-constrained scenarios. With a few driver revisions now behind us, we’re revisiting our Vega 56 hybrid card to benchmark HBCC in A/B fashion, testing in memory-constrained scenarios to determine efficacy in real gaming workloads.

Wolfenstein II: The New Colossus is launching this Friday, and Bethesda have now published the final minimum and recommended specs. Bethesda is touting some PC-focused features like uncapped framerates (as we saw in the Destiny 2 beta, this can also mean “capped above 144”), choice of aspect ratio (4:3, 16:9, 16:10, or 21:9 ultrawide), an FOV slider (70-120), and 4K support.

The New Colossus will use the Vulkan API, following in the footsteps of the notoriously well-optimized DOOM reboot. In our DOOM testing more than a year ago, AMD’s RX 480 benefitted strongly from using Vulkan rather than OpenGL, as did NVIDIA’s 1080 to a lesser degree. Vega is specifically mentioned in this release, and Bethesda claims that with Vulkan they’ve been able to “utilize the power of AMD's Vega graphics chips in ways that were not possible before.” We’ll be publishing GPU tests as soon as possible.

From Bethesda’s site:

Hardware news for the last week includes discussion on an inadvertent NZXT H700i case unveil (with “machine learning,” apparently), Ryzen/Vega APU, Vega partner card availability, and Coffee Lake availability.

Minor news items include the AMD AGESA 1.0.0.7 update to support Raven Ridge & Pinnacle Ridge, Noctua’s Chromax fans, and some VR news – like Oculus dropping its prices – and the Pimax 8K VR configuration.

Find the video and show notes below:

Following-up our tear-down of the ASUS ROG Strix Vega 64 graphics card, Buildzoid of Actually Hardcore Overclocking now visits the PCB for an in-depth VRM & PCB analysis. The big question was whether ASUS could reasonably outdo AMD's reference design, which is shockingly good for a card with such a bad cooler. "Reasonably," in this sentence, means "within reasonable cost" -- there's not much price-to-performance headroom with Vega, so any custom cards will have to keep MSRP as low as possible while still iterating on the cooler.

The PCB & VRM analysis is below, but we're still on hold for performance testing. As of right now, we are waiting on ASUS to finalize its VBIOS for best compatibility with AMD's drivers. It seems that there is some more discussion between AIB partners and AMD for this generation, which is introducing a bit of latency on launches. For now, here's the PCB analysis -- timestamps are on the left-side of the video:

We’ve already sent off the information contained in this video to Buildzoid, who has produced a PCB & VRM analysis of the ROG Strix Vega 64 by ASUS. That content will go live within the next few days, and will talk about whether the Strix card manages to outmatch AMD’s already-excellent reference PCB design for Vega. Stay tuned for that.

In the meantime, the below is a discussion of the cooling solution and disassembly process for the ASUS ROG Strix Vega 64 card. For cooling, ASUS is using a similar triple-fan solution that we highly praised in its 1080 Ti Strix model (remarkable for its noise-normalized cooling performance), along with similar heatsink layout.

Learn more here:

We’re winding-down coverage of Vega, at this point, but we’ve got a couple more curiosities to explore. This content piece looks at a mix of clock scalability for Vega across a few key clocks (for core and HBM2), and hopes to constrain for a CU difference, to some extent. We obviously can’t fully control down to the shader level (as CUs carry more than just shaders), but we can get close to it. Note that the video content does generally refer to the V56 & V64 difference as one of shaders, but more than shaders are contained in the CUs.

In our initial AMD shader comparison between Vega 56 and Vega 64, we saw nearly identical performance between the cards when clock-matched to roughly 1580~1590MHz core and 945MHz HBM2. We’re now exploring performance across a range of frequency settings, from ~1400MHz core to ~1660MHz core, and from 800MHz HBM2 to ~1050MHz HBM2.

This content piece was originally written and filmed about ten days ago, ready to go live, but we then decided to put a hold on the content and update it. Against initial plans, we ended up flashing V64 VBIOS onto the V56 to give us more voltage headroom for HBM2 clocks, allowing us to get up to 1020MHz easily on V56. There might be room in there for a bit more of an OC, but 1020MHz proved stable on both our V64 and V56 cards, making it easy to test the two comparatively.

This week's hardware news recap covers an Intel document leaked to GN, detailing H370, B360, & other launches, alongside coverage of the Zen+ & Zen 2 launches, AIB partner Vega cards, and memory kit releases. The last bit of coverage shows the new 4500 & 4600MHz memory kits that have primarily emerged from Corsair, though other vendors are following suit with new memory kit launches. GSkill, for instance, is pushing more "Ryzen-ready" memory kits in the RGB line, focusing mostly on the 3200MHz speeds that were largely shipped to reviewers. GeIL is working on RGB memory kits that synchronize with ASUS Aura RGB lighting effects for motherboards and video cards.

As for video card news, we confirmed with MSI that the company presently has limited or no plans for Vega partner model cards. Gigabyte plans to make cards, but the launch date is tenuous -- as is ASUS' launch date, at this point, as both vendors are working out final issues in manufacturing. We'd wager that it's primarily to do with supply availability, though VBIOS + driver challenges also exist.

Page 1 of 4

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge