As exciting as it is to see “+242% power offset” in overclocking tools, it’s equally deflating to see that offset only partly work. It does, though, and so we’ve minimally managed to increase our overclocking headroom from the stock +50% offset. The liquid cooler helps, considering we attached a 360mm radiator, two Corsair 120mm maglev fans, a Noctua NF-F12 fan, and a fourth fan for VRM cooling. Individual heatsinks were also added to hotter VRM components, leaving two sets unsinked, but cooled heavily with direct airflow.

This mod is our coolest-running hybrid mod yet, with large thanks to the 360mm radiator. There’s reason for that, too – we’re now able to push peak power of about 370-380W through the card, up from our previous limitation of ~308W. We were gunning for 400W, but it’s just not happening right now. We’re still working on BIOS mods and powerplay table mods.

Following the initial rumors stemming from an post about Vega price soon changing, multiple AIB partners reached out to GamersNexus – and vice versa – to discuss the truth of the content. The post by Gibbo of Overclockers suggested that launch rebates and MDF would be expiring from AMD for Vega, which would drive pricing upward as retailers scramble to make a profit on the new GPU. Launch pricing of Vega 64 was supposed to be $500, but quickly shot to $600 USD in the wake of immediate inventory selling out. This is also why the packs exist – it enables AMD to “lower” the pricing of Vega by making return on other components.

In speaking with different sources from different companies that work with AMD, GamersNexus learned that “Gibbo is right” regarding the AMD rebate expiry and subsequent price jump. AMD purportedly provided the top retailers and etailers with a $499 price on Vega 64, coupling sale of the card with a rebate to reduce spend by retailers, and therefore use leverage to force the lower price. The $100 rebate from AMD is already expiring, hence the price jump by retailers who need return. Rebates were included as a means to encourage retailers to try to sell at the lower $499 price. With those expiring, leverage is gone and retailers/etailers return to their own price structure, as margins are exceptionally low on this product.

Tearing open the RX Vega 56 card revealed more of what we expected: A Vega Frontier Edition card, which is the same as Vega 64, which is the same as Vega 56. It seems as if AMD took the same PCB & VRM run and increased volume to apply to all these cards, thereby ensuring MOQ is met and theoretically lowering cost for all devices combined. That said, the price also increases in unnecessary ways for the likes of Vega 56, which has one of the most overkill VRMs a card of its ilk possibly could -- especially given the native current and power constraints enforced by BIOS. That said, we're working on power tables mods to bypass these constraints, despite the alleged Secure Boot compliance by AMD.

We posted a tear-down of the card earlier today, though it is much the same as the Vega: Frontier Edition -- and by "much the same," we mean "exactly the same." Though, to be fair, V56 does lack the TR6 & TR5 screws of FE.

Here's the tear-down:

This week’s hardware news recap goes over some follow-up AMD coverage, closes the storyline on Corsair’s partial acquisition, and talks new products and industry news. We open with AMD RX Vega mining confirmations and talk about the “packs” – AMD’s discount bundling supposed to help get cards into the hands of gamers.

The RX Vega discussion is mostly to confirm an industry rumor: We’ve received reports from contacts at AIB partners that RX Vega will be capable of mining at 70MH/s, which is something around double current RX 580 numbers. This will lead to more limited supply of RX Vega cards, we’d suspect, but AMD’s been trying to plan for this with their “bundle packs” – purchasers can spend an extra $100 to get discounts. Unfortunately, nothing says those discounts must be spent, and an extra $100 isn’t going to stop miners who are used to paying 2x prices, anyway.

Show notes below.

We took time aside at AMD’s Threadripper & Vega event to speak with leading architects and engineers at the company, including Corporate Fellow Mike Mantor. The conversation eventually became one that we figured we’d film, as we delved deeper into discussion on small primitive discarding and methods to cull unnecessary triangles from the pipeline. Some of the discussion is generic – rules and concepts applied to rendering overall – while some gets more specific to Vega’s architecture.

The interview was sparked from talk about Vega’s primitive shader (or “prim shader”), draw-stream binning rasterization (DSBR), and small primitive discarding. We’ve transcribed large portions of the first half below, leaving the rest in video format. GN’s Andrew Coleman used Unreal Engine and Blender to demonstrate key concepts as Mantor explained them, so we’d encourage watching the video to better conceptualize the more abstract elements of the conversation.

During press briefings leading to Vega’s gaming variant launch, which looks similar to the FE card (but with DSBR and power saving features now enabled), GamersNexus met with several members of AMD’s RTG team to discuss RX Vega’s future.

One such conversation with a group of media led to the topic of lacking CrossFire marketing materials in RX Vega’s slide decks, with parallels drawn to Polaris’ brandished claims from 2016. With the Polaris launch, great emphasis was placed on dual RX 480 cards evenly embattling GTX 1080 hardware – something we later found to be of mixed virtue. This time, it seems, none of the CrossFire claims were made; in fact, "CrossFire" wasn’t once mentioned during any of the day-long media briefing. It wasn’t until media round-table sessions later in the day that the topic of CrossFire came up.

The prices are $400 for the RX Vega 56, $500 for the RX Vega 64, and we think $600 for the liquid-cooled RX Vega 64 Aqua. AMD’s launching these with different bundles for their other products as well, but we’ll talk about that momentarily. Today, we’re providing details on the RX Vega specifications, pricing, and other preliminary information (like TDP/TGP) for the GPU. We’ll have a separate content piece coming out shortly that provides a deeper dive on the Vega GPU architecture.

The RX Vega 64 flagship launches at $500 for the reference card – and so likely the range is $500 to $600 for AIB partner models, which would include your standard Strix, Twin Frozr, Windforce, and other coolers. Liquid-cooled models will clock higher by way of reduced power leakage, as we previously showed, though air cooled models can also accomplish this to some lesser but non-trivial extent. AMD’s liquid-cooled model did not carry a standalone price, but had a bundle price of $700 for the card with various discounts for other parts. More on that later.

There’s no doubt that most the news circulating right now will pertain to AMD’s new driver update – and it’s an impressive update, one which we’ll discuss below, but we wanted to revive the “gaming” & “pro” mode discussion.

In speaking with AMD about its “Gaming” and “Pro” toggle switch in the Vega drivers – something we previously demonstrated to be a UI-only switch – we learned that the company intends to do something more meaningful going forward. As of now, the toggle is nothing more than a psychological switch, limiting its usefulness to removing the WattMan button from the UI – not all that useful, in other words. Functionally pointless for Vega: FE as it launched, and symptomatic of a driver package which was either woefully incomplete or intended to encourage a placebo effect.

This feature benchmark dives into one of the top requests we received from our Patreon backers: Undervolt Vega: Frontier Edition and determine its peak power/performance configuration. The test roped us in immediately, yielding performance uplift largely across the board from preliminary settings tuning. As we dug deeper, once past all the anomalous software issues, we managed to improve Vega: FE Air’s power available to the core, reduce power consumption relative to this, and improve performance in non-trivial ways.

Although power target and core voltage are somewhat tied at the hip, both being tools for overclocking, they don’t govern one another. Power target offset dictates how much additional power budget we’re willing to provide the GPU core (from the power supply) in order to stabilize its clock. GPU Vcore governs the voltage supplied, and will generally range from 900 to 1250mv on Vega: FE cards.

Vega’s native DPM configuration runs its final three states at 1440MHz, 1528MHz, and 1600MHz for the P-states, with DPM7 at 1600MHz/1200mv. This configuration is unsustainable in stock settings, as the core is both power-starved and thermally throttled (we’ll show this in a moment). The thermal limiter on Vega: FE is ~85C, at which point the power and clock will fluctuate hard to try and maintain control of the core temperature. The result is (1) spikey frequencies and frametime latencies, worsening perceived performance, and (2) reduced overall performance as frequency struggles to maintain even 1528MHz (let alone the advertised 1600MHz). To resolve for the thermal issue, we can either configure a more intelligent fan curve than AMD’s stock configuration or create a Hybrid card; unfortunately, we’re still left with a new problem – a power limit.

The power limit can be resolved in large part by offsetting power target by +50%. Making this modification is easy and “fixes” the issue of clock-dropping, but introduces (1) new thermal issues – resolvable by configuring a higher fan RPM, of course, and (2) absurdly high power consumption for a non-linear scaling in performance. In order to truly get value out of this approach, undervolting seems the next appropriate measure. AMD’s native core voltage is far higher than necessary for the card to operate at its 1600MHz target, and so lowering voltage improves performance from the out-of-box config. This is for thermal and power reasons alike. We ultimately see significantly reduced power consumption, to the tune of ~90W in some cases, a more stable core clock and thereby higher performance, and lower temperature – and thereby controllable noise.

We can’t get all the way down to the inner workings of the pump on this one, unfortunately, as all of our source images for the Vega: Frontier Edition – Watercooled card are from a reader. The reader was kind enough to remove the shroud from their new WC version of Vega: FE so that we could get an understanding of the basics, leading us to the conclusion that AMD has built one of the most expensive pre-built liquid cooling solutions for a graphics card.

The video tear-down goes into detail on the images we received, but we’ll revisit most of it here. The card uses the same base PCB, same VRM, same GPU/HBM layout and positioning, and same everything as the air-cooled card. The difference is entirely in the cooling solution, where the Delta VRM fan goes away and is replaced with an additional reservoir (more on that in a moment), while the GPU/VRM cooling is handled by liquid plates and a pump. The die-case finstack atop the I/O is also now gone, and the baseplate is simplified to an aluminum plate with no protrusions.

Page 3 of 5

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge