AMD’s got a new strategy: Don’t give anyone time to blink between product launches. The company’s been firing off round after round of products for the past month, starting with Ryzen 7, then Ryzen 5, and now Polaris Refresh. The product cannon will eventually be reloaded with Vega, but that’s not for today.

The RX 500 series officially arrives to market today, primarily carried in on the backs of the RX 580 and RX 570 Polaris 10 GPUs. From an architectural perspective, there’s nothing new – if you know Polaris and the RX 400 series, you know the RX 500 series. This is not an exciting, bombastic launch that requires delving into some unexplored arch; in fact, our original RX 480 review heavily detailed Polaris architecture, and that’s all relevant information to today’s RX 580 launch. If you’re not up to speed on Polaris, our review from last year is a good place to start (though the numbers are now out of date, the information is still accurate).

Both the RX 580 and RX 570 will be available as of this article’s publication. The RX 580 we’re reviewing should be listed here once retailer embargo lifts, with our RX 570 model posting here. Our RX 570 review goes live tomorrow. We’re spacing them out to allow for better per-card depth, having just come off of a series of 1080 Ti reviews (Xtreme, Gaming X).

Our Gigabyte GTX 1080 Ti Aorus Xtreme ($750) review brings us to look at one of the largest video cards in the 1080 Ti family, matching it well versus the MSI 1080 Ti Gaming X. Our tests today will look at the Aorus Xtreme GPU in thermals (most heavily), noise levels, gaming performance, and overclocking, with particular interest in the efficacy of Gigabyte’s copper insert in the backplate. The Gigabyte Aorus Xtreme is a heavyweight in all departments – size being one of them – and is priced at $750, matching the MSI Gaming X directly. A major point of differentiation is the bigger focus on RGB LEDs with Gigabyte’s model, though the three-fan design is also interesting from a thermal and noise perspective. We’ll look at that more on page 3.

We’ve already posted a tear-down of this card (and friend of the site ‘Buildzoid’ has posted his PCB analysis), but we’ll recap some of the PCB and cooler basics on this first page. The card uses a 3-fan cooler (with smaller fans than the Gaming X-type cards, but more of them) and large aluminum heatsink, ultimately taking up nearly 3 PCI-e slots. It’s the same GPU and memory underneath as all other GTX 1080 Ti cards, with differences primarily in the cooling and power management departments. Clock, of course, does have some pre-OC applied to help boost over the reference model. Gigabyte is shipping the Xtreme variant of the 1080 Ti at 1632/1746MHz (OC mode) or 1607/1721 (gaming mode), toggleable through software if not manually overclocking.

We’re reviewing the new MSI GTX 1080 Ti Gaming X card today, priced at $750 and positioned as one of the highest-performing gaming cards on the market. These tests will extensively look at thermals, given that that’s the primary differentiator between same-GPU video cards, and then look at gaming performance (in FPS) versus the Reference card and our Hybrid mod FE card. Part of our thermal testing will include performance analysis with and without a backplate. Noise levels are going to be the same as the last Twin Frozr card we tested, which can be found here.

This generation of GTX 1080 Ti cards has gone big. MSI’s Gaming X is already large, but the Gigabyte unit that we’re reviewing next is similarly big in the multi-slot department. The Gaming X uses MSI’s known twin-frozr cooler, with modifications to the underlying aluminum heatsink to increase surface area and fin density. Noise output is therefore identical to the noise output of previous Twin Frozr coolers we reviewed for the 10-series, including the GTX 1080 non-Ti Gaming X.

MSI ships the 1080 Ti Gaming X at three different frequencies, configurable through software: OC mode runs at 1683MHz boost and 1569MHz base, Gaming mode runs at 1657MHz boost and 1544MHz base, and silent mode runs at 1582 and 1480MHz.


We’ve been one of the most active in modding newly-launched GPUs with “hybrid” cooling solutions, and even recently began running thermal tests on VRM components alongside said mods. Before we ever did hybrid mods, NZXT launched its G10 bracket – back in 2013 – to tremendous success and adoption. That adoption died off over time, mostly due to new GPU launches that weren’t clear on compatibility, and NZXT eventually was met by competition from Corsair’s HG10.

While we crank away at finalizing the review for the GTX 1080 Ti Gaming X, the Ryzen R5 CPUs, and some other products, we decided to run a PCB & VRM quality analysis of MSI’s card. The new GTX 1080 Ti Gaming X is another in a line of overbuilt VRMs, but interesting for a number of reasons (especially given the quality of this round’s reference VRM).

In our analysis of the PCB, we go over VRM design, overclocking potential, and power mods. The power mod section (toward the end of the video) discusses shunt shorting and how to trick the GPU into permitting a higher power throughput than natively allowed.

View Buildzoid’s analysis below:

On the heels of the media world referring to the Titan X (Pascal) as Titan XP – mostly to reduce confusion versus the previous Titan X – nVidia today announced its actual Titan Xp (lowercase ‘p,’ very important) successor to the Titan XP. Lest Titan X, Titan X, and Titan X be too confusing, we’ll be referring to these as Titan XM [Maxwell], Titan X (Pascal), and Titan Xp. We really should apologize to Nintendo for making fun of their naming scheme, as nVidia seems to now be in competition; next, we’ll have the New Titan Xp (early 2017).

Someone at nVidia is giddy over taking the world’s Titan XP name and changing it, we’re sure.

Radeon Software Crimson Edition version 17.4.1 is now live. Along with some bug fixes, the bulk of this release is additional VR support.

AMD is making good on their promise to support asynchronous reprojection for both Oculus Rift and SteamVR. Oculus’ “Asynchronous Spacewarp” is now usable on R9 Fury, 290 and 390 series cards, while SteamVR’s “Asynchronous Reprojection” is usable on RX 480 and 470s with Windows 10.

The GPU market has been shaken up recently with the release of the nVidia GTX 1080 Ti and AMD’s inevitable Vega launch. Discounts on GTX 1080s and RX 400 series cards are available and widespread at this point, so we’ve highlighted some deals for those looking to upgrade or build a new PC in 2017.

Benchmarking Mass Effect: Andromeda immediately revealed a few considerations for our finalized testing. Frametimes, for instance, were markedly lower on the first test pass. The game also prides itself in casting players into a variety of environs, including ship interiors, planet surfaces of varying geometric complexity (generally simpler), and space stations with high poly density. Given all these gameplay options, we prefaced our final benchmarking with an extensive study period to research the game’s performance in various areas, then determine which area best represented the whole experience.

Our Mass Effect: Andromeda benchmark starts with definitions of settings (like framebuffer format), then goes through research, then the final benchmarks at 4K, 1440p, and 1080p.

Buildzoid's latest contribution to our site is his analysis of the GTX 1080 Ti Founders Edition PCB and VRM, including some additional thoughts on shunt modding the card for additional OC headroom. We already reviewed the GTX 1080 Ti here, modded it for increased performance with liquid cooling, and we're now back to see if nVidia's reference board is any good.

This time, it turns out, the board is seriously overbuilt and a good option for waterblock users (or users who'd like to do a Hybrid mod like we did, considering the thermal limitations of the FE cooler). NVidia's main shortcoming with the 1080 Ti FE is its FE cooler, which limits clock boosting headroom even when operating stock. Here's Buildzoid's analysis:

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge