“Disillusioned and confused” could describe much of the response to initial AMD Vega: Frontier Edition testing and reviews. The card’s market positioning is somewhat confusing, possessing neither the professional-level driver certification nor the gaming-level price positioning. This makes Vega: FE ($1000) a very specifically placed card and, like the Titan Xp, doesn’t exactly look like the best price:performance argument for a large portion of the market. But that’s OK – it doesn’t have to be, and it’s not trying to be. The thing is, though, that AMD’s Vega architecture has been so long hyped, so long overdue, that users in our segment are looking for any sign of competition with nVidia’s high-end. It just so happens that, largely thanks to AMD’s decision to go with “Vega” as the name of its first Vega arch card, the same users saw Vega: FE as an inbound do-all flagship.

But it wasn’t really meant to compete under those expectations, it turns out.

Today, we’re focusing our review efforts most heavily on power, thermals, and noise, with the heaviest focus on power and thermals. Some of this includes power draw vs. time charts, like when Blender is engaged in long render cycles, and other tests include noise-normalized temperature testing. We’ve also got gaming benchmarks, synthetics (FireStrike, TimeSpy), and production benchmarks (Maya, 3DS Max, Blender, Creo, Catia), but those all receive less focus than our primary thermal/power analysis. This focus is because the thermal and power behavior can be extrapolated most linearly to Vega’s future supplements, and we figure it’s a way to offer a unique set of data for a review.

Following our first battery of tests, we dismantled our AMD Vega: Frontier Edition card (which we purchased retail) to get a closer look at the VRM & power design, thermal design, card assembly, and sizes for everything on the board. The tear-down process is the first step to our inevitable hybrid mod of AMD Vega, which should determine the card’s headroom with the thermal limitation removed. We’re also using this as an opportunity to report rough die size measurements, HBM stack measurements, and mounting distances for the community.

Full review testing is still forthcoming, as we didn’t have the usual pre-release embargo period to look things over, but this will serve as our first official Vega: FE coverage. Our next round of coverage will likely be a VRM analysis by Buildzoid, which will be accompanied shortly by thermal/power testing and overclock/gaming testing. Production tests will land in there somewhere – those are already half done – we just need to figure out where they fit best, based on content scheduling.

With hours to spare until our Vega shipment arrives from a retailer, we put together a review of the Zotac 1080 Ti Amp Extreme – it’s in editing now, and still pending completion – and tore-down the card. The tear-down is live now on YouTube, and is embedded below.

As for the reference to the rubber bumper not making contact, that’s shown in the above photo. Note also that this bumper isn’t over the inductors, so it’s not going to impact coil whine, and it’s not making contact to the VRM heatsink. We already tested this and have data for it in the review.

When interviewing EVGA Extreme OC Engineer “Kingpin,” the term “dailies” came up – as in daily users, or “just gamers,” or generally people who don’t use LN2 to overclock their GPU. The GTX 1080 Ti Kingpin card is not a device built for “dailies,” but rather for extreme overclockers – people who are trying to break world records.

Cards like this – the Lightning would be included – do have a reason to exist. Criticism online sometimes calls such devices “pointless” for delivering the same overall out-of-box experience as nearly any other 1080 Ti, but those criticizing aren’t looking at it from the right perspective. A Kingpin, Lightning, or other XOC card is purchased to eliminate the need to perform hard mods to get a card up to speed. It’s usable out of the box as an XOC tool.

Although it may feel like one GTX 1080 Ti isn’t too different from the next, that’s only “true” when comparing the least meaningful metric: Framerate. Once we’ve established a baseline framerate for the actual GPU – that is, GP102 – there’s not going to be a whole lot of difference between most partner cards. The difference is in thermals and noise, and most people don’t go too in-depth on either subject. For our testing, we look at thermal performance on various board components (not just the GPU), we look at noise, and we look at noise-normalized thermal performance (every card at 40dBA) for cooling efficiency testing.

EVGA’s SC2 Hybrid is an SC2 in every aspect except for cooling. The PCB is the same, the clocks are the same, and so the gaming performance is the same. For this reason alone, there’s no point to testing FPS. If framerates are all you care about, check our SC2 review.

MSI’s flagship GTX 1080 Ti Lightning GPU made an appearance at the company’s Computex booth this year, where we were able to get hands-on with the card and speak with PMs about VRM and cooling solutions. The 1080 Ti Lightning is an OC-targeted card, as indicated by its LN2 BIOS switch, and will compete with other current flagships (like the Kingpin that we just covered). The Lightning does not yet have a price, but we know the core details about cooling and power.

Starting with cooling: MSI’s 1080 Ti Lightning uses a finned baseplate (think “pin fins” from ICX) to provide additional surface area for dissipation of VRM/VRAM component heat. This baseplate covers the usual areas of the board, but is accompanied by a blackout copper heatpipe over the MOSFETs & driver IC components for heat sinking of power modules. We’ve seen this design get more spread lately, and have found it to be effective for cooling VRM devices. The heatpipe is cooled by the Lightning’s 3-fan solution, as is the rest of the thick finstack above the custom PCB.

EVGA’s GTX 1080 Ti Kingpin made its first debut to a group of press before Computex 2017, and we were given the privilege of being the first media to tear-down the card. The Kingpin edition 1080 Ti is EVGA’s highest-end video card – price TBD – and is built for extreme overclockers and enthusiasts.

The GTX 1080 Ti Kingpin uses an oversized PCB that’s similar to the FTW3, though with different components, and a two-slot cooler that partners with NTC thermistors on the VRM + VRAM components. This means that, like the FTW3, the cooling solution slaves to independent component temperatures, with a hard target of keeping all ICs under 60C (even when unnecessary or functionally useless, like for the MCUs). The Kingpin model card uses a copper-plated heatsink, six heatpipes, and the usual assortment of protrusions on the baseplate for additional surface area, but also makes accommodations for LN2 overclocking. We’ll start with detailing the air cooler, then get into LN2 and power coverage.

MSI’s GTX 1080 Ti Armor card piqued our attention for its weak stock cooler and non-reference PCB: The card, at $700, appears to be the closest we’ll get to a bare 1080 Ti PCB sale. It’s an ideal liquid cooling candidate, particularly given the overwhelmingly negative user reviews pertaining to the card’s propensity to overheat. The photos made the Armor look like a Gaming X PCB -- something we praised in our PCB & VRM electrical analysis -- but with a GTX 1070 class cooler stuck onto it. If that were the case, it’d mean the 1080 Ti Armor would perform dismally in thermals when tested with its stock cooler, but could make for a perfect H2O card.

We decided to buy one and find out why the MSI Armor had such bad user reviews, and if it’d be possible to turn the card into the best deal for a liquid-cooled 1080 Ti.

With days to go before we fly out to Taipei, Taiwan for this year's Computex show, EVGA's new 1080 Ti SC2 Hybrid card arrived for tear-down and analysis. We might not have time to get the review dialed-in on this one before the show, but we figured the least we could do is our inaugural disassembly of the card.

EVGA's 1080 Ti SC2 Hybrid makes a few changes over previous Hybrid cards, as it seems the liquid+air amalgams have grown in popularity over the past few generations. Immediately of note, the shroud now carries some 'tessellation' paint embellishments, an illuminated name plate, and a cable tether for the radiator fan. Small increments.

Another day, another GPU driver update. This one comes from AMD, with Radeon Software Crimson ReLive Edition update version 17.5.2. The new version fixes several bugs and also improves Prey’s performance on the RX 580.

Bugfixes include a NieR: Automata crash, long Forza: Horizon 3 load times, an issue with CrossFire systems where the main display adapter could appear disabled in Radeon settings, and a system hang when entering sleep or hibernate with the RX 550.

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge