For our 2700/2700X review, we wanted to see how Ryzen 2’s volt-frequency performance compared to Ryzen 1. We took our Ryzen 7 2700X and an R7 1700 and clocked them both to 4GHz, and then found the lowest possible voltage that would allow them to survive stress tests in Blender and Prime95. Full results are included in that review, but the most important point was this: the 1700 needed at least 1.425v to maintain stability, while the 2700X required only 1.162v (value reported by HWiNFO, not what was set in BIOS).

This drew our attention, because we already knew that our 2700X could barely manage 4.2GHz at >1.425v. In other words, a 5% increase in frequency from 4 to 4.2GHz required a 22.6% increase in reported voltage.

Frequency in Ryzen 2 has started to behave like GPU Boost 3.0, where temperature, power consumption, and voltage heavily impact boosting behavior when left unmanaged. Our initial experience with Ryzen 2 led us to believe that a volt-frequency curve would look almost exponential, like the one on the screen now. That was our hypothesis. To be clear, we can push frequency higher with reference clock increases to 102 or 103MHz and can then sustain 4.2GHz at lower voltages, or even 4.25GHz and up, but that’s not our goal. Our goal is to plot a volt-frequency curve with just multiplier and voltage modifications. We typically run out of thermal headroom before we run out of safe voltage headroom, but if voltage increases exponentially, that will quickly become a problem.

The AMD R5 2600 and 2600X are, we think, among the more interesting processors that AMD launched for its second generation. The R5 1600 and 1600X received awards from us for 2017, mostly laying claim to “Best All-Around” processor. The 1600 series of R5 CPUs maintained 6 cores, most the gaming performance of the R7 series, and could still capably stream or perform Blender-style production rendering tasks. At the $200-$230 price range, we claimed that it functionally killed the quad-core i5 CPU, later complicated by Intel’s six-core i5 release.

The R5 2600 and 2600X have the same product stack positioning as the 1000-series predecessors, just with higher clock speeds. For specs, the R5 2600X operates at 3.6GHz base and 4.2GHz boost, with the 2600 at 3.4/3.9GHz, and the R5 1600X/1600 operating at a maximum boost of 4.0 and 3.6GHz, respectively.

AMD’s impending Ryzen 2 CPUs – not to be confused with Zen 2, the architecture – will launch on April 19, 9AM EST, and are preempted by yet another “unboxing embargo.” We’re not technically covered under these embargoes, as we’ve sourced parts externally and are operating independently for this launch. That said, as we’ve stated in a few places, we have decided to respect the embargo (although are under no obligation to do so) out of respect for our peers. This is also being done out of trust that AMD has rectified its preferential media treatment exhibited for Threadripper, as we were told the company would do.

Still, we wanted to share some preconditions we’re considering for test cases in our Ryzen 2 CPU reviews. Some of that will be covered here today, with most of the data being held for the April 19 embargo lift. We have been testing and iterating on tests for a few weeks now, updating EFI as new versions push and collecting historical data along the way.

The core specs – those regurgitated all over the internet, undoubtedly – will follow below.

The CPUs discussed today include (Amazon pre-order links below, although we never recommend pre-ordering PC hardware):

This episode of Ask GN, shipping on Christmas day, answers a few pertinent questions from the last few weeks: We'll talk about whether we made ROI on the Titan V, whether it makes more sense to buy Ryzen now or wait for Ryzen+/Ryzen2, and then dive into the "minor" topics for the segment. Smaller topics include discussion on choosing games for benchmarking -- primarily, why we don't like ROTTR -- and our thoughts on warranty/support reviews, with some reinforced information on vertical GPU mounting. The conclusion focuses on an ancient video card and some GN modmat information.

The embedded video below contains the episode. Timestamps are below that.

The Windows 10 Fall Creators Update (FCU) has reportedly provided performance uplift under specific usage scenarios, most of which center around GPU-bound scenarios with Vega 56 or similar GPUs. We know with relative certainty that FCU has improved performance stability and frametime consistency with adaptive synchronization technologies – Gsync and FreeSync, mostly – and that there may be general GPU-bound performance uplift. Some of this could come down to driver hooks and implementation in Windows, some of it could be GPU or arch-specific. What we haven’t seen much of is CPU-bound tests, attempting to isolate the CPU as the DUT for benchmarking.

These tests look at AMD Ryzen R7 1700 (stock) performance in Windows 10 Creator’s Update (build 1703, ending in 608) versus Windows 10 Fall Creators Update. Our testing can only speak for our testing, as always, and we cannot reasonably draw conclusions across the hardware stack with these benchmarks. The tests are representative of the R7 1700 in CPU-bound scenarios, created by using a GTX 1080 Ti FTW3. Because this is a 1080 Ti FTW3, we have two additional considerations for possible performance uplift (neither of which will be represented herein):

  • - As an nVidia GPU, it is possible that driver/OS behavior will be different than with an AMD GPU
  • - As a 1080 Ti FTW3, it is possible and likely that GPU-bound performance – which we aren’t testing – would exhibit uplift where this testing does not

Our results are not conclusive of the entirety of FCU, and cannot be used to draw wide-reaching conclusions about multiple hardware configurations. Our objective is to start pinpointing performance uplift, and from what combination of components that uplift can be derived. Most reports we have seen have spotted uplift with 1070 or Vega 56 GPUs, which would indicate GPU-bound performance increases (particularly because said reports show bigger gains at higher resolutions). We also cannot yet speak to performance change on Intel CPUs.

This week's hardware news recap covers an Intel document leaked to GN, detailing H370, B360, & other launches, alongside coverage of the Zen+ & Zen 2 launches, AIB partner Vega cards, and memory kit releases. The last bit of coverage shows the new 4500 & 4600MHz memory kits that have primarily emerged from Corsair, though other vendors are following suit with new memory kit launches. GSkill, for instance, is pushing more "Ryzen-ready" memory kits in the RGB line, focusing mostly on the 3200MHz speeds that were largely shipped to reviewers. GeIL is working on RGB memory kits that synchronize with ASUS Aura RGB lighting effects for motherboards and video cards.

As for video card news, we confirmed with MSI that the company presently has limited or no plans for Vega partner model cards. Gigabyte plans to make cards, but the launch date is tenuous -- as is ASUS' launch date, at this point, as both vendors are working out final issues in manufacturing. We'd wager that it's primarily to do with supply availability, though VBIOS + driver challenges also exist.

No surprise in that headline, really.

Some of this information is rehashed, but has been bulked-up by alleged AMD slides leaked to Informatica Cero. The slides, which are functionally in “rumor” status, indicate AMD’s code-named Matisse processors as launching in 2019. The Matisse CPUs will carry AMD’s Zen 2 architecture, but aim to continue supporting AM4 platforms. Before that launch, AMD’s Zen Plus iteration is targeted for 2018, allegedly, and will exist primarily as an optimization on the existing Ryzen CPUs. This can be thought of as an analog to the retired Intel tick-tock cadence, with Zen Plus likely targeting frequency tuning.

The launch of Threadripper marks a move closer to AMD’s starting point for the Zen architecture. Contrary to popular belief, AMD did not start its plans with desktop Ryzen and then glue modules together until Epyc was created; no, instead, the company started with an MCM CPU more similar to Epyc, then worked its way down to Ryzen desktop CPUs. Threadripper is the fruition of this MCM design on the HEDT side, and benefits from months of maturation for both the platform and AMD’s support teams. Ryzen was rushed in its weeks leading to launch, which showed in both communication clarity and platform support in the early days. Finally, as things smoothed-over and AMD resolved many of its communication and platform issues, Threadripper became advantaged in its receipt of these improvements.

“Everything we learned with AM4 went into Threadripper,” one of AMD’s representatives told us, and that became clear as we continued to work on the platform. During the test process for Threadripper, work felt considerably more streamlined and remarkably free of the validation issues that had once plagued Ryzen. The fact that we were able to instantly boot to 3200MHz (and 3600MHz) memory gave hope that Threadripper would, in fact, be the benefactor of Ryzen’s learning pains.

Threadripper will ship in three immediate SKUs:

Respectively, these units are targeted at price-points of $1000, $800, and $550, making them direct competitors to Intel’s new Skylake-X family of CPUs. The i9-7900X would be the flagship – for now, anyway – that’s being more heavily challenged by AMD’s Threadripper HEDT CPUs. Today's review looks at the AMD Threadripper 1950X and 1920X CPUs in livestreaming benchmarks, Blender, Premiere, power consumption, temperatures, gaming, and more.

Our recent R7 1700 vs. i7-7700K streaming benchmarks came out in favor of the 1700, as the greater core count made it far easier to handle the simultaneous demands of streaming and gameplay without any overclocking or fiddling with process priority. Streaming isn’t the whole story, of course, and there are many situations (i.e. plain old gaming) where speed is a more valuable resource than sheer number of threads, as seen in our original 1700 review.

Today, we’re testing the R7 1700 and i7-7700K at 1440p 144Hz. We know the i7-7700K is a leader in gaming performance from our earlier CPU-bottlenecked 1080p testing; that isn’t the point here. We’ve also pitted these chips against each other in VR testing, where our conclusion was that GPU choice mattered far more, since both CPUs can deliver 90FPS equally well (and were effectively identical). This newest test is less of a competition and more of a “can the 1700 do it too” scenario. The 1700 has features that make it attractive for casual streaming or rendering, but that doesn’t mean customers want to sacrifice smooth 144Hz in pure gaming scenarios. As we explain thoroughly in the below video, there are different uses for different CPUs; it’s not quite as simple as “that one’s better,” and more accurately boils down to “that one’s better for this specific task, provided said task is your biggest focus.” Maybe that’s the R7 1700 for streaming while gaming, maybe that’s the 7700K for gaming -- but what we haven’t tested is if the 1700 can keep up at 144Hz with higher quality settings. We put to test media statements (including our own) that the 1700 should be “better at streaming,” finding that it is. It is now time to put to test the statements that the 7700K is “better at 144Hz” gaming.

This series is an ongoing venture in our follow-up tests to illustrate that, yes, the two CPUs can both exist side-by-side and can be good at different things. There’s no shame in being a leader in one aspect but not the other, and it’s just generally impossible given current manufacturing and engineering limitations, anyway. The 7700K was the challenger in the streaming benchmarks, and today it will be challenged by the inbound R7 1700 for 144Hz gaming.

People like to make things a bloodbath, but just again to remind everyone: This is less of a “versus” scenario and more of a “can they both do it?” scenario.

The prices are $400 for the RX Vega 56, $500 for the RX Vega 64, and we think $600 for the liquid-cooled RX Vega 64 Aqua. AMD’s launching these with different bundles for their other products as well, but we’ll talk about that momentarily. Today, we’re providing details on the RX Vega specifications, pricing, and other preliminary information (like TDP/TGP) for the GPU. We’ll have a separate content piece coming out shortly that provides a deeper dive on the Vega GPU architecture.

The RX Vega 64 flagship launches at $500 for the reference card – and so likely the range is $500 to $600 for AIB partner models, which would include your standard Strix, Twin Frozr, Windforce, and other coolers. Liquid-cooled models will clock higher by way of reduced power leakage, as we previously showed, though air cooled models can also accomplish this to some lesser but non-trivial extent. AMD’s liquid-cooled model did not carry a standalone price, but had a bundle price of $700 for the card with various discounts for other parts. More on that later.

Page 1 of 5

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge