The prices are $400 for the RX Vega 56, $500 for the RX Vega 64, and we think $600 for the liquid-cooled RX Vega 64 Aqua. AMD’s launching these with different bundles for their other products as well, but we’ll talk about that momentarily. Today, we’re providing details on the RX Vega specifications, pricing, and other preliminary information (like TDP/TGP) for the GPU. We’ll have a separate content piece coming out shortly that provides a deeper dive on the Vega GPU architecture.

The RX Vega 64 flagship launches at $500 for the reference card – and so likely the range is $500 to $600 for AIB partner models, which would include your standard Strix, Twin Frozr, Windforce, and other coolers. Liquid-cooled models will clock higher by way of reduced power leakage, as we previously showed, though air cooled models can also accomplish this to some lesser but non-trivial extent. AMD’s liquid-cooled model did not carry a standalone price, but had a bundle price of $700 for the card with various discounts for other parts. More on that later.

AMD’s Ryzen lineup mirrors traits at both the R3 and R7 ranges, where both series of CPUs are effectively the same inter-lineup, but with different clock speeds. The R7 CPUs largely all clock to about the same area (+/-200MHz) and consist of the same features. The same can be said for the two R3 SKUs – the R3 1200 and R3 1300X – where the CPUs are functionally identical outside of frequency. This means that, like with the R7 1700, the R3 1200 has potential to challenge and replace the 1300X for users willing to overclock. Remember: A basic overclock on this platform is trivial and something we strongly encourage for our audience. The cost savings are noteworthy when driving an R7 1700 up to 1700X or 1800X levels, and the same can likely be said about the R3 1200.

That’s what we’re finding out today, after all. Our R3 1200 review follows the review of the 1300X and aims to dive into gaming performance, overclocking performance, production applications, and power consumption. Nearby CPUs of note include the 1300X, the Pentium G4560, the R5 series CPUs, and the i3 CPUs.

AMD’s R3 1200 is a $110 part, making it $20 cheaper than the R3 1300X and significantly cheaper than both the i5 and R5 CPUs. Frequency is also down: The R3 1200 clocks at 3.1GHz base / 3.4GHz boost on its 4C/4T design, lower than the R3 1300X that we just reviewed.

The Ryzen 3 CPUs round-out AMD’s initial Ryzen offering, with the last remaining sector covered by an impending Threadripper roll-out. Even before digging into the numbers of these benchmarks, AMD’s R3 & R5 families seem to have at least partly influenced competitive pricing: The Intel i3-7350K is now $150, down from its $180 perch. We liked the 7350K as a CPU and were excited about its overclocking headroom, but found its higher price untenable for an i3 CPU given then-neighboring i5 alternatives.

Things have changed significantly since the i3-7350K review. For one, Ryzen now exists on market – and we’ve awarded the R5 1600X with an Editor’s Choice award, deferring to the 1600X over the i5-7600K in most cases. The R3 CPUs are next on the block, and stand to challenge Intel’s freshly price-reduced i3-7350K in budget gaming configurations.

This week's hardware news recap covers rumors of Corsair's partial acquisition, HBM2 production ramping, Threadripper preparation, and a few other miscellaneous topics. Core industry topics largely revolve around cooler prep for Threadripper this week, though HBM2 increasing production output (via Samsung) is also a critical item of note. Both nVidia and AMD now deploy HBM2 in their products, and other devices are beginning to eye use cases for HBM2 more heavily.

The video is embedded below. As usual, the show notes rest below that.

Every now and then, a content piece falls to the wayside and is archived indefinitely -- or just lost under a mountain of other content. That’s what happened with our AMD Ryzen pre-launch interview with Sam Naffziger, AMD Corporate Fellow, and Michael Clark, Chief Architect of Zen. We interviewed the two leading Zen architects at the Ryzen press event in February, had been placed under embargo for releasing the interview, and then we simply had too many other content pieces to make a push for this one.

The interview discusses topics of uOp cache on Ryzen CPUs, power optimizations, shadow tags, and victim cache. Parts of the interview have been transcribed below, though you’ll have to check the video for discussion on L1 writeback vs. writethrough cache designs and AMD’s shadow tags.

 

“Good for streaming” – a phrase almost universally attributed to the R7 series of Ryzen CPUs, like the R7 1700 ($270 currently), but with limited data-driven testing to definitively prove the theory. Along with most other folks in the industry, we supported Ryzen as a streamer-oriented platform in our reviews, but we based this assessment on an understanding of Ryzen’s performance in production workloads. Without actual game stream benchmarking, it was always a bit hazy just how the R7 1700 and the i7-7700K ($310 currently) would perform comparatively in game live-streaming.

This new benchmark looks at the AMD R7 1700 vs. Intel i7-7700K performance while streaming, including stream output/framerate, drop frames, streamer-side FPS, power consumption, and some brief thermal data. The goal is to determine not only whether one CPU is better than the other, but whether the difference is large enough to be potentially paradigm-shifting. The article explores all of this, though we’ve also got an embedded video below. If video is your preferred format, consider checking the article conclusion section for some additional thoughts.

Specs and prices for AMD’s upcoming Ryzen Threadripper CPUs have been announced, as well as a general release date. The 12C/24T 1920X and 16C/32T 1950X will be available worldwide starting in “Early August,” with prebuilt Alienware systems available for preorder starting July 27th. According to AMD:

“Both are unlocked, use the new Socket TR4, have quad-channel DDR4, and feature 64 lanes of PCI Express. Base clock on the Ryzen Threadripper 1950X 16-core product is 3.4 GHz with precision boost to 4.0 GHz. On the Ryzen Threadripper 1920X 12-core product, the base clock is 3.5 GHz with precision boost to 4.0 GHz.”

As an aside, manufacturers informed GamersNexus at Computex that board release dates are targeted for August 10. It’s possible that this date has changed in the time since the show, but that seems to be the known target for Threadripper.

AMD hosted its financial & analyst day today, revealing information on Vega, Threadripper, notebook deployments of its CPUs & GPUs, and data center products. Some timelines were loosely laid-out with initial benchmark previews, provided an outline for what to expect from AMD in the remainder of 2017.

Most of our time today will be spent detailing Vega, as it’s been the topic of most interest lately, with some preliminary information on the CPU products.

AMD today made available a power plan update which should change how the Balanced plan impacts Ryzen performance.

Problems with Windows preset power modes have been one of the biggest annoyances with Ryzen, and AMD has officially recommended the High Performance preset in the past in order to avoid subpar performance in benchmarks. This wasn’t a big deal from a testing point of view since High Performance mode effectively avoids all of these issues, but for everyday use, it was: High Performance mode doesn’t allow CPU frequency to drop when idle, and the additional power consumption can really hurt the long-term value of the system (it’s also just wasteful). Balanced mode does drop frequency, but it’s also been overly aggressive with core parking on Ryzen chips specifically, making it sub-optimal for use. We discussed what this looks like from a user’s point of view in our “Just Research” article, where frequency plots offer visualization for the impact of Performance vs. Balanced mode. The same article contains some FPS benchmarks between the two power modes.

AMD has made two major changes in this update. Quoting their statement:

  1. Maintain residency in CPU p0 or p1 to give Zen full control over clocks and volts.

  2. Disable core parking.

They specifically noted that Intel also fully disables core parking in the Balanced power plan. Our tests have always used High Performance mode for Ryzen platforms (except power tests), and our results will not be affected by this update.

This first revisit to Ryzen’s performance comes earlier than most, given the tempestuous environment surrounding AMD’s latest uarch. In the past weeks, we’ve seen claims that Windows updates promise a significant boon to Ryzen performance, as has also been said of memory overclocking, and we were previously instructed that EFI updates alone should bolster performance. Perhaps not unrelated, game updates to major titles could have potentially impacted performance, amounting to a significant number of variables for a revisit.

Today’s content piece aims to isolate each of these items as much as reasonable – not all can be isolated, like game updates – to better determine the performance impact from the individual changes and updates. We’ll then progress cumulatively through charts as updates are applied. Our final set of charts will contain Windows version bxxx.970, version 1002 EFI on the CH6, and memory overclocking efforts.

Page 2 of 5

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge