The Ryzen 3 CPUs round-out AMD’s initial Ryzen offering, with the last remaining sector covered by an impending Threadripper roll-out. Even before digging into the numbers of these benchmarks, AMD’s R3 & R5 families seem to have at least partly influenced competitive pricing: The Intel i3-7350K is now $150, down from its $180 perch. We liked the 7350K as a CPU and were excited about its overclocking headroom, but found its higher price untenable for an i3 CPU given then-neighboring i5 alternatives.
Things have changed significantly since the i3-7350K review. For one, Ryzen now exists on market – and we’ve awarded the R5 1600X with an Editor’s Choice award, deferring to the 1600X over the i5-7600K in most cases. The R3 CPUs are next on the block, and stand to challenge Intel’s freshly price-reduced i3-7350K in budget gaming configurations.
And so before even officially launching, AMD’s lower end SKUs have done their job: The i3-7350K is $150 as of this writing (though we’ve seen it as low as $130), posing a threat for AMD’s new R3 venture. Finally, we’re seeing some responsiveness to the market.
Through the R5 launch, our price-sorted stack for gaming has largely started at the G4560, progressed to the R5 1600 or 1600X, and then topped-out at the 7700K for a pure gaming build. The R3 1200 at $110 and R3 1300X at $130 are now on-site to shuffle that stack further, with today’s benchmarking focusing on the more expensive of the two units. Our R3 1200 review goes live immediately hereafter, so stay tuned.
R3 1300X testing will prioritize gaming, power, and production tests, with thermal testing present primarily to determine whether the included “Stealth” cooler is capable of anything worthwhile.
CPU Test Methodology
Windows 10 b970 was used for testing. R7 CPUs have been retested; some i7 & i5 CPUs have been retested. Game settings were manually controlled for the DUT. All games were run at presets defined in their respective charts. All other game settings are defined in respective game benchmarks, which we publish separately from GPU and CPU reviews.
Average FPS, 1% low, and 0.1% low times are measured. We do not measure maximum or minimum FPS results as we consider these numbers to be pure outliers. Instead, we take an average of the lowest 1% of results (1% low) to show real-world, noticeable dips; we then take an average of the lowest 0.1% of results for severe spikes.
Hardware Used
Core Components (Unchanging)
- NZXT 1200W Hale90v2
- For DDR4 platforms: Corsair Vengeance LPX 32GB 3200MHz*
- For Ryzen DDR4: Corsair Vengeance LPX 3000MHz clocked to 2933MHz (See Page 2)
- Premiere & Blender tests do not exceed 8GB DRAM. Capacity is a non-issue for our testing, so long as it is >16GB
- For DDR3 platforms: HyperX Savage 32GB 2400MHz
- Intel 730 480GB SSD
- Open Air Test Bench
- Cooler #1 (Air): Be Quiet! Dark Rock 3
- Cooler #2 (Cheap liquid): Asetek 570LC w/ Gentle Typhoon fan
- Cooler #3 (High-end): Kraken X62
- EVGA GTX 1080 FTW1
Note: fan and pump settings are configured on a per-test basis.
AM4 Platform:
- GEIL X 3200MHz CL16 (R5s, R7 1700, R7 1800X)
- GSkill Trident Z 3200MHz CL14 (R7 1700X)
Used for R7 1800X, R7 1700X, R7 1700.
Z270 Platforms:
- Gigabyte Aorus Gaming 7 (primary)
- MSI Gaming Pro Carbon (secondary - for thermal validation)
- i7-7700K (x2) samples from motherboard vendors
Both used for the 7700K.
Z170 Platform:
- MSI Gaming M7
- i7-6700K retail
Z97 Platform:
- Gigabyte Z97X G1 WIFI-BK
- i7-4790K
Z77 Platform:
- MSI GD65 Z77
- i7-2600K
Dx12 games are benchmarked using PresentMon onPresent, with further data analysis from GN-made tools.
Note: We'd like to add the i5, i3, and FX CPUs, but this was enough for now. We'll add those as we expand into coverage of Zen or i5 Kaby Lake products.